
7AD-A126 847 INTERACTIVE MICROCOMPUITER CONTROL SYSTEM MODELING AND IJ
REALIZATION USING A DATABASE FOR AUTOMA TIC PROGR AMMI NG
(U) NAVAL POSTGRADUATE SCHOOL MONTERE Y CA N P JOHNSRUD

UNCLASSIFIED DEC 82 FIG 9/2 .NL

mEEEEmohEEmhEI

III~1.0 L4'J 128 0
rk Ws 13 2

1 1.2 j 4 1116

MICROCOPY RESOLUTION TEST CHART
NATIONAL. BUREAU Of STANDARDS-1963 A

NAVAL POSTGRADUATE SCHOOL
Monterey, California

.Nit

THESIS
INTERACTIVE MICROCOMPUTER CONTROL SYSTEM

MODELING AND REALIZATION USING A DATABASE

FOR AUTOMATIC PROGRAMMING

by

Roger Francl1A Johnsrud

Decembe r 1982

Thesis Advisor: A. Gerba Jr.

Approved for oublic release; distribution unlimited

83 04 4 082
i- -SO

Mlawr W OOUENTATON PAGE 'ao c ruc. uu
Iv. upw-r muuu yy accmmeG a. musp I vIliIIIs CAT'64OO MlI Se

4. TITLE (n lUffj , Trial[of 4gao00T a PgODi Cov6Wo

Interactive Microcomputer Control System Modeling Master's Thesis
and Realization Using A Database For Automatic December 1982
Programi ng. a. VenORWIN. - OTm uf-sem

. &U" aONTAC ON anGAT *Iwneij

Roger F. Johnsrud

9. PENFOEMING OAIZATION Nme AND AOGMIS I. PWRAW 1LUEWT. PUOJ5CT ToagA~l A WORK U911T ouanllll~l

Naval Postgraduate School
Monterey, California 93940

II CONTOOLLING OPPICK MASS ASO AO8"1S 12. *E16OOT DATE
December 1982

Naval Postgraduate School is. ,uUU o, PAGgs

Monterey, California 93940 117
14. " NITOMUG 4' Y SIA0 A U A10fOl h= 'C&M.108 O) I. SICUiRITV CLASS, fel 040 fop i

Unclassified

IS. 0IOTRIuS STATESEUT (of Wa A TIO)

Approved for public release; distribution unlimited

It. KEYIUTOS (t STAITEMET (le of amOO OW "IF N, DI6il NM e)

* '. SUPPLSSEMNY wOTES

IS. t MET wOeOs rcmni -ew ..Uinm aedS SE mme.oenp mi uji Op Wi imej

Control Systems Modeling Simulation
Microcomputers Database Automatic Programming

SO. AGSTNACT (Can" n * W ee &W of m w
/ A program for control system modeling, simulation, and realization useable
by the novice programmer was developed for interactive use on a microcomputer.
The program uses two software packages; PL/1-80 from Digital Researc 'hWnd
DBASE II. from Ashton Tate.
'-The paper covers a complete example for modeling an mulaton of a
minimum time response ripple free controller for aIfS2 Plant. The program
uses two sample rates, one for modeling the computer and the other for modeling

O ,oOV 147 o o CLACATSO or Ts past Fax= L

I -~~~ ~ ~ --------------------- ,_

the plant. Variable delays due to computer computation are Included and
corrected semi-transparent to the control designer.

This thesis covers two different fields of interest, one for the
experienced control system designer yet a novice programner, and the other
for the novice control designer yet an experienced computer programmer. Key
progranming concepts include using a business database to automatically pro-
gram a control problem requiring a scientific language.

lk

,IXIn

i:

DD~~1K Fo2 17

i F l I Do

4 '

jr

Approved for public release; distribution unlimited.

Interactive Microcomputer
Control System Modeling and Realization

Using a ratabase for Automatic Programming

by

Roger Francis Johnsrud
Lieutenant, United States Navy

B.S.E.E., University of Washington, 1975

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRALUATE SCHOOL
tecember 1982

Author:

*Approved by: 16 -- - -- - - - -

Thesis Pkdvisor

Second Reader

Chaiman ~-----------------------
Ha a epartment of Elect-I En i

---------------- ----------- --
Lean of Scee and Engineering

;A '

F

A program for control system modeling, simulation. and

realization useable by the novice programmer was developed

for interactive use on a microcomputer. The program uses two

software packages; PL/I-80 from Ligital Research and LBASE II

from Ashton Tate.

The paper covers a complete example for modeling and

simulation of a minimum time response ripple free controller
2

for a 1/S Plant. The program uses two sample rates, one for

modeling the computer and the other for modeling the plant.

I Variable delays due to computer computation are includea and

corrected semi-transparent to the control designer.

This thesis covers two different fields of interest, one

for the experienced control system designer yet a novice

programmer, and the other for the novice control designer yet

an experiencel computer programmer. Key programming concepts

include using a business database to automatically program a

control problem requiring a scientific language.

* 4

I.INTRODUCTION -- - 9

A. CONCEPT -- - - - - -- - - - -

B. ASSUMPTIONS ANr REQUIREMENTS -------- 10

C. IMPLEMENTATION ---------------- 11

II. GENERAL DISCUSSION---------- ----- ---- ----- -- 13

A. CONTROL ENGINEiR INFORMATION ------ 13

B. PROGRAI"MER INFORMATION---------------- -- 18

II. SYSTEM IDIOSYNCRASIES ---------------- 19

IV. FUTURE EXTENSIONS---------------------- 24

V.DESCRIPTION OF DATABASE ALSORITHM---------------- 27

A. GENERAL IrISCUSSION --------------- 27

B. LEVEL #1 0v-AJOR SUBROUTINES AND PROCErURES) 28

C. LEVEL #2 (PROGRAM DESCRIPTION)-------------30

L. LOGICAL STRUCTURE-------------------------- 36

111. LESCRIPTION OF PL/t ALGORITHM--------------------39t

A. GENERAL DISCUSSION------------------------- 39

B. LEVEL #1 (MAJOR SUB11OUTINES AND PROCEDURES) 41

C. LEVEL #Z (PROGRAM rESCRIPTION) - -42

D. LOGICAL STRUCTURE---------------------- 43

viI. EXAMPLE -------------------------- 48

A. INTRODUCTION -------------------- 48

B. PROBLEM SETUP------------------------------ 49

C. AUTOMATIC PROGRAM 5-- - -----

r. TEST RESULTS ANt PROGiAM EXECUTION --- 76

VIII. CONCLUSIONS -P-- - -- - - - - -87

LPPENLIX A: EBASE II PROGRAMS ------- --

APPENDIX B: PL/1-80 PROGRAMS -- - -- - -- - -- 14

APPENZIX C: GRAPHS 01' EXAMPLE PROBLEM RESULTS ---- 111

LIST OF REFERENCES-------------- --------- ---- 115

BIBLIOGRAPHY -- - - - - - - - - - 116

INITIAL DISTRIBUTION--------------------------- 117

A 4

6

J16.

1. Simple Difference Equation Demonstrating System

- Variables 1.6

2. Variables Used for Initialization -------------------32

3. Initial ratabase Values -------------- -3

4A. Computer and Plant Yodel ------------------ I

4B. Test Program Block Liagrar~ - ------------ 5'3

5A. Variables Used in STRT Initialization ------------ -=

5B. Structure for STRT-------------- ---------- 57

6A. Latabase for Example Probler ------------ -------- 5

6B. Database for Example Problem ---------------------- 5
GC a a a e fo 'M l r bl m - - - - - -- - - - --.

6C. Database for Example Problem ------------------------ 32

7. Monitor reclarations and Funztions ------------- 64

EA. Function Declarations and Equations ----------------- 5& B. Function Declarations and Equations ---------------- 66

*ac. Function Declarations and Ecuatioas ----------------- 7

ED. Function Declarations and Equations--------------- 6

BE. Function Declarations and Equations --------------- 6

8F. Function Declarations and Louations --------------- 7

St'. Function reclarations and Eq~uations ------------ ---- 71

88. Function reclarations and Ecuations ---------------- 72

9. rATAIN4FO.TX" - --------------------- '-- 3-

13L. FORM.SUB ------------------------------------- 4

7

Y"

103. FORM.SUB 75

l1A. ANSWER.COM Runtime Results - 79

11B. ANSVER.COM Runtime Results ---------

12A. PRINT.PLI With Zero relay------------------------ 81

123. PRINT.PLI tith Zero Delay ---... . 82

Ilk. PRINT.PLI _qlp Nwzly Percent relay ---------------- 83

13B. PRINT.PLI i1th Forty Percent Delay -------------- 8441

13C. PHINT.PLI 4ith Forty Percent Delay 85

13:. PRINT.PLI With Forty Percent relay ------

* 14. Programs Required for Latabase Operation -...... £1

152. MENU Format ------------------------------- 9

16k. CMENU ------

161. CMENU Format ----------------------------- 95

17A. CINIT -----------------------------------

171. CINIT Format -------------------------

18. Programs Required for PL/1-Ee Operation ------------ 104

1CA. Response to Unit Step Input With No Corre tion 111

1 E. Response to Unit Step Input with Correztion-111

19C. Terminated Ramp Input With No Ccrrections 11--

19L. Terminated Ramp Input 1ith Corrections 112

I1E. Response to Variable Step Inputs tith ani vithout

Corrections -------------------- 113

19?. Response to Variable Step Inputs 4ith and Without

Corrections ------------------------------ 114

&I

~I. l NTRODUCIIQ

&. CONCEPT

The intent of this thesis was to develop a con.puter

program that an experiencel controls engineer could use to

help him model, simulate, and realize contrcl systens withit the convenien~e of a aes-to; mi-ro cmputer. T~e ortrol
engineer will not need to be an experinzed com'uter

programmer. In order to accom.plish the above requirements it

is necessary that the program be easy to use, effectively

requiring that the prorram write the iomputer codeF itself

with little help from the control lesigner. This is commonly

referred to as automatic programming. In order fir tY_

program to be a useable tool for the :ontrols d.signer the

system must also ?roluce a good mnel of the syste r ttat is

being designed. Cbviously all control systems -annot be

considered in this type of project. 'A~e anproach ti±%er In

this thesis was to use ront-ol systems that have error

signals designed to be equal to zero or differ fror ze-o by a

zonstant. Other 4uielines of this project insl'jde: zhe

equations m.ust be simple differeace equations, the syster

must allow for calculation delays within t.e orrputer and

these delays must be orrected for automr.atically or at ieas:

allow for the possibility that the designe: c-n co-rect f'-

the delays, and the ;rogram must te atle to model the 1.lnt

I

between the sample periods of the computer which basically

means there are two sample periods, one for the computer and

one for the plant. Since the plant cannot be programmed as

analog it must be discretized. Usinf a faster sample rate for

the plant allows simpler equations yet maintains a Cood

representation for the plant. Alditionall;., the program rnust

be able to model analog to digital and 4iiCtal to analog

conversions. ifter the model has teen designed and the

simulation run, the results that are available frnin the

program must be easy to use and easy to interpret by the

con-rols engineer. In :rder to meet all of these

requirements, most of the program levelopment itself 7ust be

transparent to the controls engineer. ''e arproach takea was

for the control engiaeer to ?rovide only equations. funcTTon

names, and function relationships by provLiing the names --f

other functions used as input "or ea-h equation.

B. ASSUMPTIONS ANI RECUIREME4T3

The assumptions and requirements ari s;3ted below. Tirs;,

as mentioned above, the Dro~ram must oe relatively e3si tc

use. The program must have tigh I.:eclsion 7ath capability

since it was designed tc be used with 3ontrol sjyst-s. 3peed

of compiling and oneration was not ;onsi erei criti'a at

this point since micropro :essors arhe omn rallr aad

faster which will solve any realization problmt i' the -,ear

future. A major consideration Is that once '"e siTulattonS

have been run and the results are acceptable to the lesigner

107

K7

then the simulation equations should be easily converted into

realization equations. Basically this means the simulation

equations in the computer should be easily converted into

hardware equations that can be used to control a real plant.

In order to accomplish this task it was decided that the

program must develop source code that could be compiled by a

high level language compiler for either computer simulation

or hardware implementation. This approach makes the prcF-am

transportable and hardware independent.

C. IMPLEMENTATION

This project was implemented entirely on microprocessor

based systems to show that it is feasiole and practi7al to

use these small systems for major development. The 7resent

system is slightly constrained due to the length of aor-pile

time. All programs were developed using a 7,8 microprocessor;

nowever, the code is written in high level source languages

therefore the programs will also run on the simpler E06Z

based microcomputers or on the more comilex siteen bit

microprocessors such as the SOEC.

The languages chosen were PL/1-_O from ligital Researct

oecause of the math and hardware ,apatilities -*f the lan-uap-

allowing for control of analog to d ital ,n-l other rpoc-ses

inside the computer, and DBASE iI from AsrIton 'ate .hi~h

allows easy and high level -anipulation of atabases and file

systems. Cne -f the Ta.4or points of this thesis is to

manipulate functions and functional celationchiT- -is

I U1

databases. Once the relationships have been leveloped, the

database program writes PL/i source code from the database

information. The PL/l source code is then compiled by the

PL/t compiler and the simulation run on the res.dent

The present programs and the test example in this report

provide simulation only and send the results in floating

point format to a disk file. The floatini point file can then

be converted to display the information in tabular or

graphical form such as shown at the back of this report. The

information can be displayed in a variety of forms such a5 on

display consoles, printers, plotters, or graphic terminal5.

The real power for design is in the use of graphical

equipment to provide the control engineer with tie entire

picture of the system under test. The Hewlet Pacbard 9872B
plotter and 2647A graphics terminal and the Intercolor

83F3

graphics terminal were used to show that the data produced

was basically machine independent. The code -an le -o plpted.,

run, and displayed on a variety of different macbines.

.2

12

-
%-

.,-,,,)
;

II. GENERAL DISCUSSION

A. CONTROL ENGINEER INFORMATION

The control system engineer does not need to know how the

computer programs work in order to use the system. It is

assumed that the control engineer is a novice programmer with

some knowledge of the CP/M operating system and limited

background In program writing; however, it is assumed 'e is a

, £nowledgeable control designer. This means be is fairly uell

versed in taking control systems and producing aiscrete

system equations from the continuous control equations. These

equations are designed and optimized by whatever means a-e

Navailable either by hand or on a Tainframe computer.

(Microcomputers will soon be able to 4o major system

j development equations.) Once the equations are develped the

designer enters them into a microcomputer and tests the

simulations. If tte simulations are acceptable then it shhuld

be an easy matter to convert the simulation code for t.e

controller design into devPIopment cde for a-tual

implementation into hardware.

For ease of use the programs are menu driven and use

simple cursor arrows or commanis for pointin ; at selections.

Additionally veri basic information is needed such as the

name of functions and equations in a simvle fo:-mat the

computer can use. This procedure is acco: plisbed oj usirn'. the

1. .

database program which only allows a user to enter

information in very specific fields of very specific type.

The type of information required from the designer is to add

or delete equations, to change initial conditions, and to

provide function names.

There is an initial learning Curve with this program but

an attempt has been made to keep it as short as possiole.

There are some peculiarities put in as a requirement to make

interfacing between the human and the computer possiblp. Some

examples include names such as INPUT:A or INPUT:E that

indicate which function the designer is talking acut to the

computer. As an example INPUT:A will associate a functior in

the computer with the function name the designer has selected

such as INPUT:A = Un. Another very abstract namA is AhI2r.

The user is expected to enter either 1 if he wants the

PRESENT value of the function named under IPUT:A or 2 i he

wants the rELAYEr value of the function named under INPUT:A.

If the designer will be using both the present and past
values then enter to get the present value and the nast

value will also be available. The strange requiremert fnr

A1P2D is provided only to allow much faster programs when th"

code is implemented in hardware and the designer only needs

past or delayed values of a function. Two other codes ar? IAP

and lAD for INPUT A PRESENT and INPUT A DELAYEr. These two

codes are provided to keep the equations neel1ed for the

functions short. Another variable is 0 which is user. tc

14

- - ------ ----- - --- --

define the delayed or previous time sample of the functions

own OUTPUT. There are similar definitions for up to five

inputs INPUT:A through INPUT:E for each function. A function

can be defined in three ways; "F" means the function is an

equation that the computer finds a register to hold the

result in, "IA(x)" means the value is to be placed in one of

eight analog to digital registers, and "LA(x)" means the

value is to be placed in one of eight digital to analog

re~isters. An example equation and simple block liagram is

shown in Figure 1.

Other variables used include "T" for the discrete sample

period and "Ti" for the sample period of the plant. If the

value of T is normalized and TI has the same value as T then

the programs will run faster in the redlization of the ,-ode

since these values effectively disappear from the equations.

It should be noted that all functions are done in floating

point so the simpler the equations the faster the code. The

example problem at the end of this paper normalizes T but

still includes it in the equations to show how it could sbow

up in the function. Finally the designer is allowed to

specify end criteria and intervals for calculating the plant

relative to the computer itself.

After the designer has entered the equations into the

database and is satisfied that all function relationships are

correct then all that is required is to enter the correct

menu selection that compiles the code. The ccrmuter program

:15

a.5

2)0

y _________________________________

IAF 1A 0

F C: D~k) LAP = 1k), lAD I~ - liP !

FUCand 0z an OtThU bAe lo eqation l ia s dtesiequa:o

F - 1AP - (2 * lAD) + 13? - (0-5 * 0)

Notice that the above function only has two Inputs, X antn Y

Figure 1

Simple Difference Equation temonstrating System Variables

16

will now write the necessary source code from the database

and subsequently invoke the PL/1 compiler which will turn the

code into a program that will run on any of the previously

discussed CP/M based systems. The executable file produced is

called LNSWER.COM and is run on a CP/M based system by typing

"ANSWER" in response to the operating system input prompt.

Luring program ANSWER.COM execution the results will be sent

to a floating point file called DATA.7LT. Also, while the

program is running the intermediate results are printed on

the display device for program troubleshooting should the

results not be as expected. The file rATA.FLT is not

printable; however, an example utility program called

PRINT.PLI is provided that changes the floating point file

into a printable text file. This program is executed by

typing PRINT FILE where FILE is the name of the designer

provided text file the designer wants the results placed

into. With further programming development the floating point

data Can be converted into any format needed by different

aevices such as plotters as shown by the plot results in

Appendix C.

The information for understanding the database program

operation is provided in Chapter V. This section is not

necessary for understanding at the design level but it does

explain variables that will be needed in equation

development. &dditionally the example problem will be helpful

to the design engineer, when the designer is ready to use the

17

__ _ _ _ _ _ _

program all that is needed is to enter "BLASE MENU" to the

CP/M operating system prompt. is previously stated the

designer will need some familiarity with CP/M before the

program can be of use.

B. PROGRAMMER INFORMATION

This section covers the experience necessary for program

maintenance and further development. These programs would be

worked on and coded by an individual that has a general

control system background; however, he must have substantial

experience with computer programming. The type of computer

experience needed pertains to operating systems, event

counters, and automatic programming. The programmer must have

a good knowledge of both PL/1-80 and LBASE II. Additionally

it would be necessary to know microccmputer hardware

implementations such as analog to digital -onverters and

sample and holds. These devices are simulated in the omputer

programs but further useful extensions would involve

implementing the code into realized hardware. The information

required for the programmer to understand the programs !s

contained in the remainder of this thesis. The majcritj of

this thesis is the computer code required to irplement a

design environment for a novice programmer through the use of

automatic programming.

18

I II 1 IL I I II II I i/
• •I,

Major problems encountered in this thesis had to do with

programming and efficiency. The major problem Is that there

is no one programming language that contains all the features

necessary to implement the entire project. LBA5Z II was

chosen because of the relational database characteristics

even though it has very limited math or hardware

capabilities. The requirements for reasonable math is the

reasor PL/I-80 was chosen and though some database systems

are avaliable for PL/1 they do not have all the features of

IBISE II. A major deficiency of LEASE II is that it will not

allow the printing of a semicolon. The se'ricoIon is

considered a command character in LEASE II and therefore

reserved. This can be considered a major bug for a database

system, especially one that was designed for business

applications. It is foolish to 3elieve business will not want

to include a semicolon someplace in one of their

transactions. Ashton Tate was notified and they replied it

'was not worth trying to fix. This presents a problem since

the database program was used to write the source code in

iL/I and PL/t requires a semizolon at the end of every

statement. The problem was worked around by having 1BASE II

write a backslash everj place a semicclon was needed in tne

PL/I source text. %ext a PL/i preprocessor :alled REFC.'.PLI

and&-1

FNNW-"

was used to change all backslashes to semicolons prior to

invoking the PL/I compiler. This takes a large amount of the

compile time which could have been easily corrected by a

reasonable response from Ashton Tate. PL/1 also has some(,i problems; however, Ligital Research was more than bap~py to

try to overcome deficiencies. Tbere are several problems in

their floating point routines due mainly to :onversion rules

which :an cause strange effects in the results. Most floating

point functions such as the exponential function tend tc

convert the arguments to fixed before calculation and this in

effect truncates the arguments. As an example if one desires

to raise an exponent to a power and that power is a fun-tion

such as X/Y then both X and Y ani the result 4et truncatel.

If Y/Y is a fraction less than 1.0 the effect is to truncate

the result to e.0 and the result of the exponent to a

fractional power always ends up equal to 1.e. The wiy a.r-und

tkis problem is to convert X and Y to CH3AZTERS before doing

the division. This is only part (f the problem. Even if X and

Y origionally were floating ppint and were convertea to

characters the result of the exponent evaluation is fixed

deci-al. Now this result must je converted by anctner

function called FTC in order to get the result back to t:.e

6,. system in floating point. An example of this shows up in the

MONITOR.PLI program for the function :alled OF. This does

cause some limitation on the type of equations that the

aesigner can use without knowing some pe,ullarities of t-e

:1 _ __.. .._

designer can use without knowing some peculiarities of the

system.

For the sake of program efficiency, as far as 4evelopment

goes, all variables or functions the designer uses are

considered floating point. This makes programming easier with

j higher precision; however, the code takes longer to execute

even though the execution time was not considered critical in

this implementation. Using floating point for all functions

introduces some inaccurate realizations when dealinz with

analog to digital and digital to analog converters. This is

not a major problem since these devices will have greater

accuracy in the future or thb devices can be mo:-ele. more

accurately in future designs.

All results presently produced by this system are placed

on floppy disks inside the comi puter. Writing to the di.sk and

displaying the results on a terminal are an obvious slowdown

in system operation. These inefficiencies do not show up in a

realization of the control system since the controlle- will

be self contained computer code communicating only with the

converters. Additionally the code will be faster since it

will not be necessarl to simulate the plant.

Presently the realization of the code is not imple-ente-4..

The software code needed for convprters and the actual

monitor needed for the realized hardware is not ieveloTed.

This is not a major problem and should be relatively straight

forward for a computer programer with general hard-warei
21

=7-1x

experience. The actual control program will be identical and

will only need to link into the new converter programs. In

addition the simulation display is not fully implemented. To

make this project a powerful tool the simulation results

should be presented in graphical form to the designer similar

to the plots at the end of this taper. If properly displayed,

when the designer changes one part of the system all effects

throughout the system should be dynamically evident. Tbe

advantages of a completely containe, hardware, software. and

display system are obvious.

The time required to compile the programs is iefinitely a

function of the computer hardware. Most newer ZaZ based

single user systems can compile the code in about fifteen

minutes. 8080 based systems, older ZSO based systems, and

multiuser systems that snare the central processor will

require up to thirty minutes to compile. Re,;all tte 7oT.pile

time is not critical as mentioned earlier anq the realization

code will run in the order of milliseconds. As a final note

the programs would run much faster if only one langvaze and

no preprocessor were needed.

Another area that requires discussion is the tneory

involved in the design of the correction factor. revelopment

of a general prediction factor lue to delays caused by

conversions and computer calculations is covered very briefly

In this paper. The practical results of a predictor that is

used with the example problem is shown in the graphs at the

22

end of this paper; however, how the results were obtaine! and

what they really mean is not fully investigated. Hopefully,

this will be pursued and discussed in a following paper. The

predictor Is more a control engineers problem and needs to be

investigated extensively to determine the optimum predictor

for all possible delays. Further discussion Is provided in

the example problem.

2

II

23,
- , II II III -- ll -.. .--

"- ... 2 -ti:: . 4

IV. FUTURE EXTENSIONS

After a careful investigation of the types of problems

encountered with various hardware and software interfaces, it

becomes very evident that a sixteen bit c.r larger

microprocessor that offers high speed calculation irtegrated

into a complete graphic and plotting machine will be a

definite boost to the realization of future work.

Additionally a math processor integrated circuit that :an

operate concurrently with the central processor will 'e -.f

invaluable importance. Once you place these hardware items

along with good converter circuits into one unit it will .o

longer be necessary to simulate in one nachine and realize in

another. Once the simulation code works all that will be

needed will be to specify executing the realization code on

the same machine if connectors are available on the ,raohine

for communicating with the plant. Once the systerr onerates

correctly the hardware woula be reduced to a smaller special

purpose system; however, the power of using a .i2roprocessor

for the controller cannot be overlooked. If one nroviae5 the

capability of a full blown microcomputer in the :ontrol loot

even thougb all processes are not needed, the system could be

sent to a distant changing environment and it' the control

equations needed to be changed due to unforseen clr-.umstanc~s

it could be done remotely. By using the above ,method it ould

24LL i~ EL.. - - .i,

be possible to reconfigure and realize a aew system

dynamically which cannot be done by a physical one time

hardware implementation.

Another requirement is the software system needed for

this type of development. The problems of Integrating two

completely different software packages is evident in this

paper. An ideal software package would be a scientific

relational database that has the capaoility to control the

computer harlware and provide seli modifying code or

automatic programming for it's own operating system. This

type of language would make the programming more efficient,

ease the implementation, and provide a friendlier environment

for future expansion. This type of software package is

Nrealizable under the new concurrent languages being developed

such as ALA (product of the Lepartment of Lefence). ArA has

not been proven to work in microcomputers since it is such an

extensive language; however, several companies are showing it

to be feasible in the newer computers such as t~e 8000

microprocessor from Motorola. The 66C00 is a thirty tw bit

processor with a sixteen bit external ous. Motorola is

presently designing a version of te 6E,00 toave a thirty

two bit external bus.

It is recommended that future systems contain processors

such as the 680(0 and math processors such as Intel's 897 or

similar math processors from other companies such as ?etas

Instruments. Additionally high speed high precision analot, to

2r

diital and digital to analoe, converters should be used. The

type of' converters used should contain their own multiple

input sample and hold cir-.uits. This would insure capturing6

all inputs at the same time (versus ti-ne multiplexing) making

the c-ontrol realizations Fiore praotical for real time

ojperatioas.

rZ

V. DESCRIPTION 0F DATABASE~ ALGQ~jItH

A. GENERAL DISCUSSICN (Refer to Appendix A)

This section covers how the database turns tle functions

into PL/1-80 code. It covers each suiroutine and there ar

nints on how the control designer uses tne systemt. The

easiest way for the control designer to use this thesis is to

briefly read this material, go throufh the example pro 'le-'.

anda then proceed directly into the program. In general a

database is a program that contains related inf'or~ation.

Normally t1~ese Drograms are used in busiaess applincations

hi~ere it is desired to keep track of an Indivirjuals name.

adaress, or account information; however, databases can be

used to store other informTation. In this program

implementation the database contains the function name, the

type of function such as an analog function, names of other

functions that are used by this function as inputs. the

equations for the functions, the relationship cetween

functions, and if the function will be saved for later re,~.all

and plottinog.

The program has the ability to devel~op new or re call old

system models that have been previously develoded. Cn'!e the

program Is entered the model can te changedi by aidin.: or

deletinb, transfer functions, chanE~e relatlonsnips. or change

the equiations. Addlitionally the models initial coiiitions ---n

IZ

AL ._._.....

be changed. If only the initial conditions are changed the

program will compile much faster since each function will not

need to be recompiled. After the system model is developed

the database proceeds to write PL/1 "include" files that are

later included into standard PL/1 modules developed for this

project.

The features of the LEASE II program are the high level

relational database language and the ability of the program

to write text files onto floppy disk. The disadvantages

include a limited math capability and it does not provide the

ability to interface with the microcompute: hardware. A

severe drawback in the program is that it cannot produce a

semicolon in any of the text files tnat it writes.

B. LEVEL #1 (MAJOR SUBROUTINES AND PROCEDURES)

1. MENU.CMr - initial menu selection

a. Initializes all variables and the database.

b. Enters a CASE statement to select a new problem,

old problem, save the present problem, display preser.t

function names, change only the initial conditions of the

present problem, or quit the program.

c. See Figures 15A and 15B in Appendic A.

2. CMENU.CMl - second level menu selection

a. Develops the control model database.

b. Enters a CASE statement to edit, add, delete,

recall deleted functions, or change initial conditions.

28

.,

c. Calls CONTROL.CML.

d. See Figures 16A and 16S in Appendix A.

3. CONTROL.CMT - database control program

a. Calls procedures CCLMON.Cmr, PROC.CMD, DATA.Cm .

and FORM.CML that develop the PL/i "include" source core.

b. Ends the database program and invokes the PL,'i

programs.

4. L'LVON.C - monitor declaration proeram

a. Develops DC.MON.TXT for the MONITOR.PLI program.

b. Calls MCNLCL.CMt.

. MONdeCL.CM] - develops AA.TXT, AD.TXT, !D.TXT, ani

LA.TXT include functions for 'CNITOR.PLI.

6. Paoc.,.mr - Levelops LCLFUN.XXX, INUT.XXX, FUNZ.XXX,

and OUT.XXX for each funztion ieveloped by the :ontrol

engineer to be used in the appropriate function AA.PLI,

AD.PLI, DD.PLI, or rk.PL.

7. A AA.C!Ot - data declaration proedu-E

a. tevelops rATAINFO.TXT to be use4 in PRINT.PLI

b. 1ATA1tiFC.TXT conrtains valuable forr.at informatlon

pertaining to the ATA.FLT file.

c.- calls DATA I.CA - addAtional data format file

e. ?OR m. ' - PL/i command e'ecution prozrim

a. Levelops submit file ?ORY.SIB used to cont~ol the

order of PL/i program :orrpiling.

b. Issues comnands to reformat files contaninz a

ba.kslash into files with a ser,icolon.

- -.------- - - ---- .- c.* w ~ .,- ~ -.-

c. Calls LCLFUN.CMr - function name setup for REFORM

d. Calls REFORM.CMD - general format for PL/1

compiling.

9. SHOTzgM_ - short compile program

a. reveloDs initial conditions for LCLMON.TXT and

MONITOR.PLI.

b. Issues commands to control the compiling of only

MONITOR.PLI by developing a submit file SFORV.CMr.

c. Calls SFORM.CML - short format for PL/1 compiling

similar to FORM.SUB called SFORM.SUB.

C. LEVEL #2 (PROGRAM DESCRIPTION)

Since the majority of the code is in higher level

languages, and is designed in modules, it is already ir

algorithmic form. It is assumed ttat the individual needing

to understand the code will be familiar with references I

through 4; therefore, an extensive discussion of the computer

code will not be provided. The example problem will cover all

the features of the program.

The basic structure of the database includes a memory

file that contains the value of" initial variables and a

database file that contains the functions and ti.eir

relationships to each other. The entire database program is

involved with manipulating and recalling information from the

two above mentioned files.

The initial memory file is shown in Figure 2 and is

contained in file INIT.MEM. This file is provided so that

30

initial variaoles called will not produce errors in the

database program. The main variables of concern are:

1. T - discrete sample period,

2. T - analog sample period,

3. D-LIMIT - end criteria for tne digital simulation,

4. ALIMIT - number of analog samples for each digital

sample.

5. LELAY - delays due to calculation and conversion

expressed as the number of analog counts after the sample

period T.

Unseen system variables include:

1. ACTION - users next menu selection,

2. PARAM- holds database program name,

3. CN - test variable,

4. FN - test variable,

-5. TEMPOUT - temporary variaole,

6. ELEMENTS -data array position for a variable.

7. IND - index counter,

8. FUN -string of characters that is used to unlaqely

define a function filetype,

9. LATA1 - number of data array elements saved.

The basic structure for all functions is shown in Figure

3 and is contained in file INIT.DBF. The initial values :f

the database are shown at the bottom of the Figure 3. rIhe

only items the control designer sees are listed under the

NAME column of Figure 3. The user must enter values for the

31

'iir,'. I

Ii

ACTION (C) 0
PARAM (C) INIT
C I(C) INIT
YN (C) FUNCTION
T' (N) 1.000
ELIMIT (N) 10
ALIMIT (N) 5
T EMPOUT (c) 00.0000
ELEMEMTS (N)
rND (N) 0
FUN (C) AICLEGHIJKLPNOPQRSTUVWXYZ

ELAY (N) 0
T1 (N) 1.000
LATA1 (N) 0

Figure 2

Variables Used for Initialization

, ~32

STRUCTURE FOR FILE: INIT.LBF
NUMBER OF RECORLS: 00001
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE CATABASE
LC NAME TYPE WIrTH rEC
001 FUNCNAME C e08
002 FUNCTYPE C 002
003 NR:INPUTS C 001
004 INPUT:A C 008
005 AIP2L C 001
006 INPUT:B C 008
00? BIP2 C 001
008 INPUT :C C 008
009 C1P2D C 001
010 INPUT:t C 009
011 DIP2L C 001

012 INPUT:E C 008
013 E1P2L C 001
014 FK N (08 004
015 FIL N 008 (04
016 EQUATION C 05e
017 SAVELATA L e01
018 LATANAME C (05

Below is a list of the values used in the initialization.
* These values correspond directly to the structure above.

00001 NEW FUNC
At
0
ONE

TWO
1
THREE
1
FOUR
1
FIVE
1
0.00e0
0.0000
A(1)=0
.F.
AD(1)

Figure

Initial ratabase Values

33

variables under NAME of the correct type and size specified.

The definitions for the variables are given below:

1. IgNqNAME - function name used to identify this

function initialized to "NEW FUNC".

2. FUNC E - describes this function's tjpe as;

a. AA - analog,

b. AD - analog to digital,

c. LL - digital,

d. DA - digital to analog.

3. NR:INPUTS - This is the number of other functions

this function uses for inputs. AL(x) and EA(z) registers dre

not counted as functions.

4. INPUT:A - This is a variable for name of function

used as an input and is shown at Lne bottom of Figure 3 as

ONE". This value is referred to in the equations as IAP or

IAD for INPUT A PRESENT or INPUT A D1LAYEL.

5. AI2D - This is a code to tell the computer the

designer is talking about the "A* input and he wants either a

i for the PRESENT value or "2" for the LELYEr value.

Entering a "I" will make both the present and delayed values

available but the program will run slower than if only the

aelayed value is needed.

6. INPUT. - This variable is identical to 4 aL cve

except this is the "B" input and has an initial name of T.IO"

as shown at the bottom of Figure 3. INPUT:C, INPUT:E, and

34

INPUT:E are the same as above which allows for up to five

inputs.

7. BIPZL - This variable is the same as 5 above except

it is for the "B'" input function. C1P2D, DIP2D, and EIP2D all

have the same function except they are used with their

respective inputs.

8. Fj - This function is the present value of the

function named under FUNCNAME above.

9. FKD - this is the delayed or previous sample period

value of the function named in FUNCNAME 'ie. FK delayed).

10. EqgAjTIO - this is the equation for the function

named in FUNCNAME above. The equation takes three forms;

F this is a function,

At(x) = ----- value for an analog to digital,

DA(x) = ---- value for a digital to analog.

11. SAVELATA - logical value indicating if the user wants

to save the value of this function for tabulation.

12. DATANAME - if it Is decided to save the function then

what type function is it;

F - the function itself,

AL(x) - one of the eight analoC: to digital,

LA(z) - one of the eight digital to anal:g.

It should be noted that functions are of three types. If

the computer finds a location for the function or it is not

* hardware dependent then the function is described as ?' If

the function is one of the other two types "AI(x) or 'A x)"

35

then they represent physical fixed registers within the

computer. If the l tter two types are used as arguments in an

equation they are not listed as inputs under NR:INPUTS for

the function. Since they are physical registers they are

called by their name (ie. AD(5)) and not by IAP or IAL.

D. LOGICAL STRUCTURE

The logical structure discussed will be a general outline

of program flow. A complete discussion is covered in the

example problem. Initially the control designer enters the

program by responding "£BASE ENU" to the CP/M operating

system prompt. This will place the program unaer control nf

MENU.CML which initializes the program and enters a 04SE

statement that provides a menu selection shown in Figure 15A.

At this point the designer usually starts a new problem or

recalls an old problem that modifications will be Tade to.

Notice that in order to save a problem the user must select

from this menu option. In general the next choice of the

designer is to enter the modification phase either seleiting

to change only the initial conditions of an old problem -r

selecting to make major changes. If major or new changes are

chosen the program transfers control to CMENU.CMD where the

designer is allowed to change the function database by menu

selections shown in Figure 16A. The choices are controlled by

the CASE statement in CmENU.CML. ',ost selections are single

command entries followed by a -RETURN" from the keyboard.

Some commands will operate without a "RETURN" especially if

36

i ~~----------.-...------------

I i

the user has exceeded a field in one of the database records.

The fields are marked on the display with a ":" at each end

of the field. On some terminals the arrow keys may not always

work for positioning the cursor in a field desired. In this

case use "CTRL E" (control key pressed at the same time as

the "E" key) to move the cursor up a field. Use "CTRL X to

move down a field and "CTRL C" to move down a complete

reco rd.

Once the user is sure the database contains all "correct'

functions and relationships he should return to the t1AIN

PROGRAM" if he wants to save the information otherwise any

changes will be lost during compiling. The program could be

improved by adding a question in the CONTROL.CMD procedure

asking the user if he wants to save the information before

compiling. It takes more than fifteen minutes to compile the

program so a few extra minutes che'.king for correctness

before compiling can be well worth the effort.

Once the option to compile the program is taken, iontrcl

passes to CONTROL.CML. This is the main control procedure

that causes the automatic programming oy callinv all

necessary procedures required to write the PL, source cole

from the database. A complete discussion of this pro:edtiwe is

co acontained in the example problem. After the PL/1 source .ode

is written, a control program is written on how to .ompile

the PL/i code. Finally the database transfers control to the

control program it just wrote, called FORM.SUB, by iting

37

the database and submitting EORM.SUB to the CF/M operating

system. At this point the PL/1 programs are compiled and

execu ted.

3E

VI. CESCRIPTION CF PLZl ALGORITHM

A. GENERAL DISCUSSION (Refer to Appendix B)

This section describes the PL/1 programs and how they

interact to provide simulation of a computer controller fc r

an analog plant. There are five basic procedures Consisting

of a monitor that insures all functions are calculatedi at

least once during each sample period of the computer, an

analog procedure for describing analog calculations. a

digital to analog procedure and analog to digital proceiure

for describing conversions, and a aigital D-oceture for

describing computer calculations. There is onily one monit-,r

but there are as many of the other procedur s as needed to

describe the entire system model for each functioa. A5 aq

example if there are two analog to digital equations in the

problem then there would be two analog to digital procedures,

one for each equation. The example problem will derronstrate

the function relationships. The basic procedures reqluire

Information for each function and that is providedt ty tbe

control engineer throlah the database prog:,rarn In the fc'-- of

include files. Once the program is ready and c~ompiled

automatically by the database program a result file -,iiled

ANSWER.COM1 Is produced. The problem is run by 1t.fpin# AN.'kFR

to the .,Plm operating system prompt. ks t1he program is

runnint; intermediate results are displayed on the di1:lay

device for troubleshooting should the results not be as

expected. After the program runs it produces a file DATA.FLT

containing floating point data. This file can be translated

into a text file by typing PRINT FILE where FILE is a name of

a file provided by the user that he wants the results placed

into.

PL/1 was chosen as the operating system language because

of several features. First it is a common high level langbage

that is transportable to many of the present microcomputers.

The intent of this project was to ceep the proerams as

machine independent as possible and using PL/i source code is

a good way to do this. PL/l also has very good math

capabilities. Since the type of problems being solved are

engineering in nature it was necessary to have a high Level

math language. Additionalli, the aoilitj for PLi'/ to

communicate with the computer barcware is a definite asset if

the programs are to be realized into tardware. 3everal other

languages were lookea at such as PASCAL but PASCAL does not

have the abilitj to talk to the hardware. he * C l~ngxua~e

was also looked at but it lacks the ma th capability. -s

stated in Chapter IV.; hopefully, ADA will cverccme all the

difficulties by combining all the needed features i.to one

-. language.

PL/1- 0 has some problems. There is a definite troolem

with conversion factors as was discussed in Chapter III. T.e

main problems have to do with conversions tetween flodtin.

I *. -

- . - - - - - -_ _ __ _ _ _ !-.

point and other forms. The original approach was to use only

floating point values and therefore not need conversions but

it was later discovered that several functions lo conversions

regardless of starting and ending types. This is a prcblerr

and cannot be overlooked by the designer if he has problems

with results. If equations requiring icmplex functions are

used the designer will need to be-ome familiar with FL/!.

B. LEVEL #1 (MAJOR SUBRCUTINES AND ?EOSELJRES)

1. MONITOR.PLI - main control loop progran,

a. Causes iteration of all functions.

b. Insures all functions are calle i in ;roper c-ter.

c. Saves data for later display and analysis.

2. AA.PLI - basic format for all anilog functions

a. Calls all functions ised as inputs.

b. Calculates and returns it's own present or past

values to all functions that call It.

c. Insures synctronizatlon of ,alculations with *he

s/stem clo:ks through event counts.

3. Ar.PLI - basic fornat for all analcz to Ii.ital

functions and performs Inentical functions to those shown in

2a, 2b, and 23 above.

4. _LI - basic fcrrat for all dig:al funrtions and

performs identizal functlons to those shown in 2 above.

5. rA.PLT - basic fcrmat for all digital to analof

functicns and performs identical fuictlons to those above.

41

--------------------- -

6. REFORM.PLI - corrects all improperly formed PL/1

"include" files by changing the backslash produced by the

BDASE II Drogram into semicolons.

7. P INTX.f~ - utility program showing how to convert the

floating point file DATA.FLT produced by the main program

into a different printable text file for display on the

system display.

C. LEVEL #2 (PROGRAM rESCRIPTION)

Since the majority of the code is in higher level

languages, and is designed in modules, it is already in

algorithmic form. It is assumed that the individual needing

to understand the code will be familiar with references 1

through 4; therefore, an extensive discussion of the computer

code will not be provided. The example problem will cover all

the features of the program.

The basic structure of the program uses a monitor that

sequentially calls all functions within the computer once

during each digital clock. The system clock is used as an

event counter to provide synchronization for each function.

The functions are developed by the control engineer through

the database program and each functional relationship

indicating which functions call each other must be uronerly

provided. This is taken care of when the designer states

which functions are inputs to each other. A function can have

Its output connected to any number of functions but a

42

function can only have five inputs not counting analoC to

digital, digital to analog, and It's own delayed output. The

function definition allows for very ccmplex multiple

input/output relationships within any single equation. A

method for correcting for computation and other delays is

provided in the correction factor CF in the monitor. This is

a factor provided for the example problem; however, it is

felt that this equation will work for any control system of

the type requiring a steady state error signal of zero. The

Ci is provided but can be eliminated simply by not

referencing it in any of the equations. The progrars provided

are for simulation only but should be easily realizeA into

control hardware since the design eouations will not change.

L. LOGICAL STRUCTURE

The program contains a number of procedures that are

basic to all problems. These were discussed above.

Additionally each problem has unique features that are

provided by the control designer through the database

programs. These features are coded into PL/I "include" files

and read in at coripile time. Once the programs are coded all

information as to which functions are connectec tocether will

be provided. The monitor is a DO #4ILE LOOP that calls all

analog to digital and digital functions once each count of

the .lock. At each count of the digital clock (DCLCCK) any

called function will perform it's own equation evaluation if

it has not already been calculated. during this clock and

.43

I ________ _________ _________________________________

return the correct value to the invoking function. When the

monitor calls a function it does not use the value returned.

Additionally there is a DO WHILE LOCP Inside the main monitor

loop used to call the analog functions the number of times

specified by the designer to occur between each digital

sample period. This is the analog clock C ACLOCK). Also

during the analog clock when the ACLOCK is equal to the DELAY

specified by the designer the digital to analog function is

invoked. When a function is Invoked, the first thing that it

does is check to see if it has any inputs. If there are any

inputs then the input functions are called to insure they are

the correct value before the equation is calculated. Even

though the monitor is a sequential process invoking ea,'h

function, once a function is called it will invoke all of the

input functions needed for equation "alculation. Some

functions could be called many ti-es iuring each -lock

depending on how many other fun(:tions use it's output. Once

each LCLOCK the monitor outputs values that have been

requested by the designer to save into a file.

The first Drocedures called by the monitor are all

digital to analog functions located ;n a file written by the

*database program called "ad.txt". The functions take the forn

lummyptr FUNCTION-NAME where FUNCTION-NAME is the name of

the function and the file FUNCTION-NAME contains the

necessary information to represent the function. The exarple

problem has a more detailed discussion. The first thlng the

4

SZIiiIL~TL

digital to analog functions do is call the analog functions

that are used as inputs. If these analog functions have other

analog inputs they call their inputs before calculating their

output results. This process will continue until the analog

functions have no inputs or their inputs come from a digital

to analog register that will contain a value for a correct

point in time. Similar processes occur for files "dd.txt",

"aa.txt , and aa.txt representing digital, digital to

analog, and analog functions respectively. The c rder of

calling is controlled initially by the monitor and is

extremely important for all processes to obtain the correct

results. Direct coding of the Drocesses would be much more

efficient but it must be remembered that tnese processes must

work no matter how the designer initially defined the

problem. This method of problem solution has merits even fir

the experienced pro6rammer. Even though the code is longer

than direct programming this type of problem will typically

require one or two hundred files iatroducing the possibility

for syntax and other programming errors.

The four main functions aa.pli, ad.pli, dd.pli, and

da.pli all have the same general structure. Basically the

function is zalled by the monitor cr another function, the

function calls any inputs, and then returns the correct value

of the equation at the time the equation was invoked. This

arrangement places a process on the stack through the PL/1

calling routine until all inputs are available eliminating

4 5

the need for developing a special process uanager. Using this

approach makes the programs easily adapted to concurrent

processors and languages such as ALA. The conversion routines

ad.pli and da.pli do not have a provision for using their

delayed values since they would not be available in real

hardware. This forces a true representation of the hardware

and makes the designer provide intermediate holding functions

if delayed values are needed. Additionally the actual co-Ie

for hardware will be easier to implement at a later date. The

other functions dd.pli and aa.pli have provision to return a

previously calculated value if only the delayed value is

desired. This allows the code to run much faster and provides

more powerful equations within a single function. All folir

processes allow for up to five function inputs and the

procedure knows how to call those inputs by using the

variable "nrinputs" to determine to which label in the

function to jump. Basically all functions the designer

implements are written into one of the above four procedures.

As an example if the designer specifies a digital function

called DIGIT, the database will write the include files and

then compile the dd.pli procedure into a file Lt.REL. Next

the compiled file rD.REL will be copied into DIGIT.REL wni-!h

will now contain all the necessary Information fo- the

function rIGIT. Additionally the necessary information such

as the name DIGIT will be included into the monitor so that

it knows to call the function once each clock period.

46

.

V

Before any of the PL/l programs can be !ompiled, all the

text files written by rBASE II that contain a backslash must

be converted to semicolons. This is accomplished by the

procedure REFORM.PLI. This is a simple program that reads in

a file, translates the character, and outputs to a new file.

The files reading from and too are controlled by the submit

files FORM.SUB or SFORM.SUB written by the DBASE II Program.

The programs compile into a program called UNS'ME 1 .COM

under the control of the database program. ASWER.COM is the

file needed to run the problem. The designer only needs to

place this file on a CP/M based system and type AXS\3Ev in

response to the operating system prompt. This uill run the

program and send the intermediate results to the display and

send the floating point data into a file called DATA.FLT.

Once the program has been run it may be desired to nlace

the floatin, point data into a different form for display and

analysis. This project can be greatly improved oy providing

the results on a graphical display device. Both tazulir and

graphical results are supplied at the end of this paper and

the reader can determine fcr himself which is the best

method. One utility program provlied Is called PINT PLI.

This program reads in the floating point data by usine the

information contained in the file DATAINFO.TXT as to how the

data was stored and then sends the information into a text

file specified by the user. This text file can then be

printed if desired.

47

• AL

VII. EXAMPLE

A. INTRODUCTION

This part of the paper will make reference to all

aspects of the project and provides the easiest method for

understanding the entire paper. It should be noted that the

descriptions as to how the data is entered and displayed is

somewhat misrepresented since the entire project was designed

for an interactive environment. The actual data entry at

runtime is much more formal with data fields that allow only

specific entry in specific areas of very specific type. This

is not a constraint but an aid. Aks an example if the user is

to replay if he wants to save the function results he can

only answer with "T, F, Y, or N" for "true, false. yes, or

no". The answers can 1,e in upper or lower case ind i* an

improper input is made such as 7 the computer will BEEP and

wait for a correct response. Additionally some information is

supplied in reverse video or highlighted. In the event that a

color system is used such as the INTERCOLOR the information

will be in different colors. The only way to fully appreciate

the aids for the designer is to run the program. In order to

provide a realistic test for this program the sample problem

will include a plant that is at the limit of stability and is

initially designed to be controlled bi a bang bang

controller. The process will include a control loop that

4E

I

feeds back on itseif which provides a definite headache to

computer programmers because of the synchronization problems.

h, k'bOILVA, SE:TUP
2

Assumle we have a continuous 1/S pldnt and it is desired

to produce a minimum time response ripple free controller

L(k) for a unit step input. Referring to Figure 4A below,

L(k) is the computer transfer function, T is the sample rate

of the input, E Is the delay from input sample at time T to

output sample including all computation and conversion

delays, and the clamp is included since the computer output

is held fixed between samples. Assuming that the clamp has a

U(t) T TD

Clamp... Plant

Figure 4A

Computer and Plant Model

49

very short conversion delay compared to all other delays in

the digital system, the output of the clamp is for all

practical purposes the same as the input to the clamp. This

has been demonstrated by many authors (Ref. 5]. The next

initial assumption will be to ignore any delays due to

conversions and calculations in the computer (ie set r 0).

This will allow for simple design equations jet the gross

error in reasoning will be easily corrected for later. It

should be noted that most control systems ignore the delays

due to computer computation since the delays are usually

insignificant compared to the sample rate.

By letting X2(t) = the Dlant output, Xl(t) = d/dt[X2(t'],

and letting the input to the plant be E2(t) ty ignoring the

effeits of the clamp and computation delay, a set cf discrete

difference equations can be developed describing the plant at

the sample instances T. These equations have been developed

in the past by many authors [Ref. C-] and are shown bel;-w in

discrete form:

Xl(k+l) = Xl(k) + T * F2(k) 1)

X2(k+l) = T * X1(k) + X2(k) - (T ' T) / 21 2(k (2

where;

d/dt[Xl(t)] evaluates to Xl(k+l)

d/dt[X2(t)] evaluates to X2(k+l)

Now the next task is to control the plant described by

the equations in 1 and 2 above according to the design

requirements for a minimum time response ripple free

peii _ ____ ___ ____ ____ _5_

controller. Since this Is a sec.ond order system it will take

two time periods to obtain control. Assume the initial state

vector equals zero (le. X1(0) = X2(0) = 0). Since we watt the

second time state with X1(2) = 0 or no ripple and X2(2) =1,

the input unit step, this leads to the set of equations below

after some manipulation:

X1(2) =T * E,2(0) + T * E12(i) = 0

X2(2) = [3*(T * T)/2)*E2(0) + [PT * T)/211*E2(1) 1 (4)

Solving equations 3 and 4 above simultaneously leads to-

E20 1/(T * T)

Z2(1) =- 1/(T * T) 03~)

By definition of the Z transform, equations 5 and and

the fact that the desired output requires F2(k) = 0 for k > 1

leads to:

32(z) = 1/(T * T) - [1/(T * T)lz -

Now to find the Z transform of Ei(k) we start with the

problem definition of zero initial ionditions ind a unit step

input.

At k =0

""'WO) = t(0) -X2(0)

At k 1

91(l) =U(i) X 2(1)

=1 -UT * V)/21 * F,2(0)

= I -[('1 * T)/21 * 1/i'T ~T)

=1 0.5 0 0.S

At k 2

E1(2) = U(2) - X2(2)

=1I - 1 = 0

For K > 1 El(k) = 0

The above set of equations leads to the Z transform:
-1

El(z) = 1 + 0.5z (8)

Since r(z) = E2(z) / E1(z), the algorithm for the

computer, we can now take the ratio of equations 7 and 8 and

cross multiply then transform to find the difference

equations needed.
-1. -1

(i + 0.5z]*E2(z) = [i/(T * T)] * Ei - z]*El(z) ()

E2(k) + 0.5*E2(k-i) = [i/(T * T)]*[E1(k) - E1(k-1)] If)

E2(k) = - 0.5*E2(k-1) + [I/(T * T)"*'[EI(k)-E1(k-1)j II)

Equation 1i is the one used for the computer simulation

and shown in Figure 4B along with the rest of the model.

Since it is not allowed to use subscripted or arrays fcr

variable names in this program implementation the follwing

changes have been made in Figure 1B for variables in

equations 1, 2. and 1i:

EK = El(k)

El(k-i) referenced as the delayed value of EK or IAIL in

the function EZK.

E21 = E2(k)

T2(k-1) referenced as the delayed value of E2K or 0 in

t1e function E2K.

X1N = Xi(k) or Xl(n) if n different from k

-AL ---L- - - -' - - - - -

T+

ADW DA (1)
C OM PUT ER

UN

PLANT

Figure 4B

Test Program Hlock Liagraln

53

Xl(k-i) referenced as the delayed value of KiN or "0" in

the function XIN and IAL in function X2N1.

X2NI = X2(k) or X2(n) if n different from k

X2(k-1) referenced as the delayed value of X2(k) or "0*

in the function X2NI and IAZ in function AD2.

UN = U(t)

Ti =[T i]/j

In the initial design the sample rate of the digital

system T and the sample rate of the analog system at discrete

points TI were considered the same(ie. I = J). The only

reason for providing the possibility of calculating the

analog values at different points is to see what happens to

the plant between sample points of the digital system at T.

In most problems T and "I" will be normalized to unity and

"J" will represent the number of sample points calculated by

the plant for each unit sample period T.

Now to account for the combined delays in the disrete

system due to analog tc digital, digital to analog, and

computation delays. This function is called CF cr the

Correction Factor. The CF in most systems is a major

consideration in initial equation development and usually

resembles Kalman Filters or predictors. The approach taken

,.j for this thesis was that the average designer would not know

or zould not estimate these delays due to system variables.

This means the simulations would not work as expected and

needless to say neither would the realizations of the control

54

K **.- .

algorithms in the real hardware. The attempt was to force the

designer to consider the delays in his design and possibly

provide a good predictor initially for his use. It was

assumed that since this type control system requires an error

signal that is zero when in control this would indicate that

the signal is zero mean. Since the instantaneous input is

random It was assumed the error signal was gaussian and

provide a standard exponential predictor to the error signal
-E

to correct for delays. The predictor chosen was CF = e

where e is the natural log and r is the combined delays. The

CF is not a complete guess and further work will be presented

at a later date. The results of the CF to this particular

example can be seen in the plots at the end of this paper.

Further research needs to be done to see if this correction

works for truncation, roundoff, or even noise in the Input

signal. The point is that some type of correction needs to be

added and this one works very *ell in this case. If the CF is

not wanted the designer only needs to eliminate it froT any

of his equations.

C. AUTOMATIC PROGRAM (Refer to Appendix A and B)

The designer will initially enter the program by entering

" A3E MENU" and a RIETURN to the CP/M operating system

prompt. This assumes the disk containing the rBsEs programs

is in drive "A" and the disk containing the PL/1 programs is

in drive "B". The system can be modified to run on a single

disk as was done in the original system but the disk must

-- - --- - - -

contain at least one megabyte and should have directory space

for at least one hundred fifty files. By using the program

setup requirements above the database is entered by menu

selection "I" of Figure 15A to start a new program. This will

initialize the system and enter the menu selection of Figure

16A. Next if menu selection "5" is entered the initial

conditions of Figure 2 can be changed to the ones shown in

Figure 5A. This is done by the display menu CINIT of Figure

17A. Note that some parameters of Figure 5A are effected by

returning to the main menu and saving the program under the

name STRT, others are developed as part of the program

process such as ACTICN which chanoes each time a menu

selection is made, and others such as rATAl are developed by

the program itself counting the number of items that have

been requested to save. As can be seen from Figure A,

4LIMIT was entered as 10 which means there will be 10 analog

calculations for each ligital calculation. Since the initial

design used the same sample time for both the digital and

analog then T1 must be adjusted to e.1 as discussed

previously since T is normalized to 1. After the initial

conditions ALIMIT, DLIVIT, DELAY, T, and Ti are entered. the

program returns back to CMENU of Figure 16A.

- Next assume menu selection "2" is selected and the

functions are added. The structure will remain basically the

same with only slight changes shown in Figure 51. The

database for the problem will look something like that shown

56

K -

ACTION (C) 3
PARAM (C) STRT
CN (C)
FN (C) FUNCTION
ELEMENTS (N) 0
LLIMIT (N) 10
ALIMIT (N) 10
T1 (N) 0.100
FUN (C) ABCrEFGHIJKLMNOPQRSTUVWXYZ
INr (N) 7
T (N) 1.000
DELAY (N) 4
LATA1 (N) 8

Figure 5A

Variables Used in STRT Initialization

STRUCTURE FOP FILE: STRT.LBF
NUMBER OF RECORDS: 0008
DATE OF LAST UPDATE: 11/11/92
PRIMARY USE DATABASE
TLD NAME TYPE WIDTH DEC
001 FUNCNAME C 008
002 FUNCTYPE C e02
003 NR:INPUTS C 001
004 INPUT:A C 008
005 AIP2t C 001
006 INPUT:B C 008
007 p1P2t C 001
008 INPUT:C C 008
009 C1P2L C 001
010 INPUT:L C 008
011 DIP2D C eo
012 INPUT:E C 008
013 E1P2L C 001
014 FK N 00a 004
015 FIE N 008 004
016 EQUATION C 050
017 SAVErATA L 001
018 EATANAME C e05

Figure 5B

Structure for STRT

57

in Figure 6A - 6r below. Keep in mind that the display looks

quite different due to color, highlighting, or reverse video.

Also, only one record at a time will be on the screen.

The remainder of the menu programs will not be covered

since they are self explanatory. It should be noted that in

order to save the problem the designer is working on, he must

first return to the main menu and then save the parameters.

The program will ask for the name of the file the user wants

to save the program in. The example problem was saved in file

3TRT. If there are questions about the menus look at

procedures MENU.Cmr and CMENU.CML in Appendix A. After all

functions are entered CORRECTLY, and the program is saved if

desired, then enter 0" for menu selection in Figure 16A.

This will cause the program to enter the autoratic

programming phase. (Take a break because it will take about

fifteen minutes.) If the program fails to compile it will

probably be due to improper naming of functions. Function

names cannot be arrays. If the results are not as expected,

ever though the program compiles, then the equations are

probably in error or there is a strange conversion in PL/i.

If this happens then unfortunately references 2 through 4

must be studied.

Once compiling begins control passes to CONTHOL.ZMr. The

first function called is rCLMCN.CMr which writes the monitor

declarations rCLMON.TXT for tONITOR.PLI and files A.TTT,

AL.TTT, rE.TTT, and DA.TTT containing the procedure Palls for

58

RiECORD 00001
FUNCN&ME :UTN
FUNCTTPE :AA:
NR:INPUTS :0:
IMPPUT:A :ONE
A1P2r :1:
INPUT:B :TWO
B1P2D :1:

INPUT:C T HREE
C1P2t :1:
INPUT:D :FOUJR
r1Pir :1:
INPUT:E :FIVE
X1P2D :1:
FE 1.0000:
Ut : 0.0000:
EQUATION :F=1 .0000
SAMEATA :T:
LATANAME :F

RECORD 00002
FUNCNAME :"
FUNCTYPE a:tt
NR:INPUTS L.
INPUT:A :ONE
A1P2r :1:
INPUT:B :~
B1P2L: :1:
INPUT:C :THREE
C1P2D :1:
INPUT:t :?OUR
C1P2r :1:
I NPUT: E :FIVE
E1P2r :1:
FK :0.0000:
FKD :0.0000:
EQUATION :F=(ALU1)-&r(2i'%Cy
SAVE"LATA :T
DATANAME :

Figure 6A

Database For E~xam~ple Problem,~

~"Mm

RECORr 00003
FUNCNAME :EZK
FUNCTYPE :t:
NR:INPUTS :1:
INPUT:A S
k1P2r :1:
INPUT:B :W
B1P2D :1:
I NPUT: C :THREE
ClP21; :1:
INPUT:D :FOUR
DlP2r :1:
INPUT:E :FIVE
E1P2r :1:

FK : 0.0000:
FID : 0.0000:
EQUATION :F=(ILP-tIkr)/(T*T)-.5*O
SAMEATA :T
DATANAME :

RECORr 00004
FUNCNAME :XIN
FUNCTYPE :AA:
NR:INPUTS :0:
INPTJT:A :ONE
AlP21) :I:
INPUT:B :TWO
BIP21 :1:
INPUT:C :THREE
C1P2r :1:
INJPUT:t :FOUR
D1P2D :1:
INPUT:E:FV
EIP2r :1:
F! : e.0000:
Fir : 3.0000:
EQUATION :FEtA(1)*'r14O
S&VELA& :T':

-. DATANAME :

Figure 6B

Latabase For Example Problem

-6A

RECORD 00005
FUNCNAME :X2Nl
FUNCTTPE :AA:
NR:INPUTS :1:
I NPTT: A :XlN
A1P2D :2:
INPUT:B :W
BlP2E. :1:
INPUT:C :THREE
ClP21E :1:
INPUT:fl :FOUR
D1P2D :1:
INPTJT:E :FIVE
ElP2r :1:

F1 : 0.0000:
FKIE : 0.0000:
EQUATION :F=rA(1)*Tl*Tl/2+IAr*Tl+O
SAVEDATA :T
DATANAME :F

RECORD 00006
FUNCNAME :hr1
FUNCTYPE :r
NR:INPUTS :1:
INPUT:k U
A1P2r :1:
INPUT:B :TWO
B1P2E :1:
INPTJT:C :THREE
CIP2D :1:
INPUT:r :FOUR
r1P2r :1:
I NPIT: E :FI V:-
E1P2E :1:
FE 0.0000:
FKD :0.0000:
EQUA&TION :Ar(l)=IAP
SAvErATA :T
DATANAME :AD(l):

Figure 15C

Latabase For Example Problem

RECORD mo
FUNCNAME :AD2
FUNCTYPE :At:
NR:INPUTS :1:
INPUT:& :X2N1
A1P2E :2:
INPUT:B :TWO
B1P2E: :1:
INPUT:C :THREE
CIP2D) :1:
INPUT:r :FOUR
r1P2t :1:
INPUT:E :F'IVE
ElPir :1:
FK 0 .0000:
FKD 0.000
EQUATION :Ar(2)=iAr
SAVEDATA :T:
DATANAME :AD(2):

RECORr 0o00
FUNCINAME :DAl
FUNCTYPE :tA:
NR:INPIUTS :1:
INPUT:A E1
A ' P2L :1:
INPTJT:B :TWO
B1P2D :I:
INPUT:C :THREE
C1P2r :1:
INPUT:fl :FCUR
rlP2r :1:
INPUT:E :FIVE
E1P2D :1:
FK 0.00
FKD 0.0000:
EQUATION :DA(1)=IAP
SkVEDATAk :T
DrATANAME :DA(l):

Figure 6D

ratabase For Example Problem

62

* ---- -aIrk

the mor.ttor. See Figure 7. Next PROC.CMr is invoked for each

of the four types of functions. This procedure writes the

declarations for each function called DCLFUN.XXX where XXX

stands for which function number it is (ie. A, B, C etc. and

the last two XX indicate the function type (ie. kA, ht, rr,

rA). PROC.CMr also writes the function input files INPUT.XXX,

function equation files FUNC.XXX, and the output files

OUT.XXX that are used to indicate which element in the data

array each function represents. See Figures 8A through 8H.

The next function invoked is DATA.CMD. This procedure w.rites

the file rATAINFC.TXT that tells how many functions are

stored in the floating point file rATA.?LT and the location

of each element. See Figure 9. Next the program passes

control to FORM.CMr. This procedure writes the program that

tells the computer what to do with all the files that have

just been written. Basically it produces a CP/M SUBMIT file

that tell the system to reform or correct all files that have

a backslash into files containing semicolons, then it tells

the system to compile each function and place it under it's

own unique function name. After compiling each function it

links them all together into one program called ANSWER.COM .

See Figure 10. Finally after the database program writes the

SUBMIT program it passes control to the program it just wrote

and creates the simi-lation program ANSWER.COM as just

mentioned.

e3

i..

IS

1* ECLMON.TXT *

UN ext entry(fixed(7)) returns(ptr),
uNm ext entry(fixed(7)) returns(ptr),
12N1 ext entry(fixed(7)) returns(ptr),
Ar1 ext entry(fixed(7)) returns(ptr),
Ar2 ext entry(fixed('?)) returns(ptr).
DA1 ext entry(fixed(?)) returns(ptr),

EX ext entry(fixed(7)) returns(ptr),
E2K ext entry(fixed(7)) returns(ptr),
T float static ext init(1.0000),
Ti float static ext init(6.1m0),
DLIMlT fixed static init(10),
ALItMIT float static init(10),
delay float static init(4),
1 dat ext,

2 data(9) dec(15,6)

/* AA.TXT *
dummy ptr = UN (codie)\
durrypt r = X1N (code)\
dummY-ptr = X2NI (code)\

/* AI.TXT *
dummyptr = A1r1 (zode)\
dummy-ptr = Afl2 ccde)\

I* rr.TXT *
dummy ptr = EK (ccde)\
dummy ptr - E2K (code)\

/* LA.TXT */
lummy ptr = DA1 (code)\

Figure 7

onitor reclarations and Functions

64

j _ __ _ _

1* DCLFUN.AAA *

UN :proc(code) returns(ptr)\
dcl
ar inputs fixed(7) static init(0),
ON! ext eftry(fixed(7)) returns(ptr),
TWO ext entry(fixed(7)) returns(ptr),
THREE ext entry(fixed('?)) returns(ptr),
FOUR ext entry(fixed(7)) returns(ptr),
FIVE ext entry(fixed(7)) returns(ptr),
Ff1:::ixe7 static ininit(11,
c foa)tied static init(1.000,1,,,)
o float static init(0.0000)\

1dtext,
2 data(8) lec(15.6)\

/* 1CLINP.TXT - THIS IS PART OF ALL FUNCTIONS ANL WAS
FIXED FOR THE THESIS 'CASE OF NUMERIC

dclCONTROL SYSTEY'S. *

I. IA based(iaptr),
2 1AP float,
2 1Ar float,

I 'B based(ibpt)
2 IBP float,
2 IBr float,

I IC based(cptr),
2 ICP float,
2 ICD float,

1 ID based(idptr),j 2 ILP float,
2 Irr float,

2 IE? float,
2 ME float;

/* INPUT-AAA */
input(1) - ONE
3nput(2) =TWO
input(3) m THREE \
input(4) aFOUR
Input (5) a FIVE

F-t.Z000
/* OUT.AAA *
data(' 1) -ftc(F
put skip list~data(1.) '.F

Figure A

Function reclarations and Equations

I'. ECLFUN.BAA *

XI.N :proc(code) returns(ptr)\
dc 1
nrinputs fixed(?) static init(O),
ONE ert entry(fixed(7)) returns(ptr),
TWO ext entry(fixed(?)) returns(ptr),
THREE ext entry(fixed(?)) returns(ptr),
FOUR ext entry(fixed(7)) returns(ptr),
FIVE ext entry(fixed('?)) returns(ptr),
cod(5) fixed(7) staticiit,,,1),
F float static init(0.0000),
O float static: init(0.0000)\
dcl

1 dat ext,
2 data(8) dec(15,6)\

1* tCLINP.TXT - THIS IS PART OF ALL FUNCTIONS ANr WAS
FIXEt: FOR THE THESIS CASE OF NUMERIC
CONTROL SYSTEM~S. *

dcl
1 IA based(iajptr),
2 lAP float,
2 lAt float,

1 lB based(ibptr),
2 IB? float,
2 iBr ficat,

I IC based(ic-ptr),
2 1CP float,
2 ICt float,

I It based(idptr),
2 IDP float,
2 Itt float,

1 IE based(ieptr),
2 IEP float,
2 lM float;

/* INPUT.BAA */
input(l) = ONE
input(2) = TWO
input(3) - THREE \
input(4) =FOUR
input(') = FIVE
/* FUNC.BAA *
Fu-DA (fl*Tl+O
/* OUT.B&A *
data(2) - ftc(F
put skip list('data(2) ',F

Figure el

Function reclarations and Equations

1* rCLFUN.CAA *

X2N1 :proc(code) returns(ptr)\
dcl
nrinputs fixed(7) static init(l),
XlN ext entry(fixed(7)) returns(ptr),
TWO ext entry(fixed(7)) returns(ptr),
THREE ext entry(fixed(7)) returns(ptr),
FOUR ext entry(fixed(7)) returas(ptr),
FIVE ext entry(fixed(7)) returus(ptr),
cod(5) fixed(?) static ifit(2.i,1,ll),
F float static Init(0.0000),
0 float static init(0.0000)\
dcl

1. dat ext,
2 data(8) dec(15,6)\

/* rCLINP.TXT - THIS IS PART OF ALL FUNCTIONS AND WAS
FIXED) FOR THE THESIS CASE OF NUMERIC
CONTROL SYSTEMS. *

dcl
1 IA based(iaptr),

2IA? float,
2 IAr float,

I lB based(ibptr),
2 IBP float,
2 !Br float,

1 IC based(icptr),
2 ICP float,
2 LCD float,

1. ID based(idptr),
2 IL? float,
2 int float,

1 IE based(ieptr),
2 IEP float,
2 EL float;

1* INPUT.CAA ~
Input(2) TWOI
input(2) = TO
input(3) = THREE \
input(4) = FOUR
iriput(5) = FIVE
/* FUNC.CAA */
F=Lk(l)'*Tl*Tl/2+IAr*Tl+O
/* OUT.CAA *1
data(20 f ftc(F
put skip list(data(3) = ,F

Figure SC

Function reclarations and Equations

67

/*' DCLFUN.AAD *

Arl :proc(code) returns(ptr)\
dc 1
nrinputs fixed(7) static init(1),
UN ext entry(fixed(7)) returns(ptr),
TWO ext entry(fixed('?)) returns(ptr),
THREE ext entry(fixed(7)) returns(ptr),
FOUR ext eutry(fixed(?)) returns(ptr).
FIVE ext entry(fixed(?)) returns(ptr),
cod(5) fixed.(7) static init(1,1,1,1,1),
F float static init(0.0000),
0 float stati2 init(0.0000)\
Ici
1 dat ext,
2 data(8) dec(15,6)\

/* DCLINP.TXT - THIS IS PART OF ALL FUNCTIONS AND WAS
FIXEt FOR THE THESIS CASE OF NUMERIC
CONTROL SYSTEMS. *

dcl
1 IA based(iaptr),
2 lAP float,
2 lAr float,

1. lB based(ibptr),
2 IBP float,
2 lIn float,

1 IC based(icptr),
2 ICP float,
2 lCD float,

1 ID based(idptr),
2 IDP float,
2 IrL float,

1 IE based(ie-ptr),
2 IEP float,
2 lEL float;

/* INPUT.AAD *
input(l) =UN
input(-) =TWO
Input(3) = THREE\
input(4) =FOUR
input(5) = FIVE
/* FUNC.AAD *
AD (1)=IAP
/* OUT.AAD *
data(4) = ftc(Ar(l))\
put skip list(*data(4) =,rl)

Figure SL

Function reclarations and Equations

68.

/* LCLYUN.BAL *

Ar2 :proc(code) returns(ptr)\
dIcl
nrinputs fixed(7) static init(i),
X2N1 ext entry(fixed(7)) returns(ptr),
TNO ext entry(fixed(?)) returns(ptr),
THREE ext entry(fixed(?)) returns(ptr),
FOUR ext entry(fixed(7)) returns(ptr),
FIVE ext entry(fixed(7)) returns(rtr),
cod(5) fixed47) static init(2,1,1,1M,
F float static init(0.0000),
0 float static init(0.0000)\
1c 1
1 dat ext,
2 data(8) dec(15,6)\

1* LmVLINP.TXT - THIS IS PART OF k'LL FUNCTIONS ANt: WAS
FIXED FOR THE THESIS CASE CF NUMERIC
CONTROL SYSTEMS. ~

dcl
I1IA based(iaptr),
2 lAP float,
2 rAt float,

1 13 based(ibptr),
2 IBP float,
2 lBE float,

1 IC based(icptr),
2 IC? float,
2 icr float,

I ID based(idptr),
2 Ir? float,
2 Itt float,

1 IE based(ieptr),
2 IEP float,
2 lEt float;

/* INPUT.BAD */
input(1) = X2N1
input(2) = TWO
input(3) = THREE \
input(4) =FOUR
input(5) = FIVE
/* FUNC.BAD 4'/
t12)=IAL

1* OUT.BAD *
data(5) = ftc(AL(2))\
put skip list('data(5)

Figure SE

Function reclarations and Equations

/* LCLFUN.ALD *

EK :proc(code) returns(ptr)\
dcl
nrirnputs fixed(7) static init(e),
ONE ext entry(fixed(7)) returns(ptr),
TWO ext entry(fixed(7)) returns(ptr),
THREE ext entry(fixed(7)) returns(ptr),
FOUR ext entry(fixed(7)) returns(ptr),
FIVE ext entry(fixed(7)) returas(ptr),
coa(5) fixed(7) static nt11,,,)
F float static Iriit(0.19000),
O float static init(0.0000)\
dcl
1 dat ext,
2 data(8) dec(15,6)\

/* DCLINP.TXT - THIS IS PART OF ALL FUNCTIONS ANT: 9AS
PIXEL FOR THE THESIS CASE OF NUMERIC
CONTROL SYST SMS .

(icl
1 1A based(1a~jtr),
2 lAP float,
2 lAL float,

1 lB based(ib ptr),
2 IBP float,
2 BE float,

1 IC based(ic..ptr),
2 ICP float,
2 ICL float,

I IL based(id~ptr),
2 IDP float,
2 ILL float,

1 IE based(ieptr),
2 11P float,
2 lEIt float;

/* INPUT-ALL */
Input(l) = ONE
input(?) = TWO
input (3) = THREE \
input(4) =FOUR
input(5) = FIVE
/* FUNC.ALL ~
F-(AD(1)-AD(2))*CF
/* OUT.ALL *
data(6) = ftc(F
put skip list('data(6) =,F

Figure EF

?unction Declarations ana Equations

91~~ ______

1* LCLFUN.Eir *

E2K :proc(code) returns(ptr)\
dcl
ur-inputs fixed(7) static init(l),
EK ext eatry(fixed(?)) returns(ptr),
TWO ext entry(fixed(7)) returns~ptr),
MtEEE ext entry(fixed(?)) returns(ptr),
FOUR ext ertry(fixed(?)) returns(ptr),
FIVE ext entry(fixed(?)) returns(ptr),
cod(5) fixed(?) static ii(,,,,)
F float static init(0.00)
0 float static init(0.0000)\

a dcl
1 dat ext,
2 data(8) dec(15,6)\

/* LCLINP.TXT - THIS IS PART OF ALL FUNCTIONS AND WAS
FIXEL FOR THE THESIS 3ASE OF NUMERIC
CONTROL SYSTEMS. ~

Icl
1 IA based(ia-ptr),

2 lAP float,
2 IAD float,

1 lB based(ib ptr),
2 IBP float,
2 IBD float,

1 IC based(icptr),
2 ICP float,
2 lCD float,

1 IL based(idptr),
2 It? float,
2 IDD float,

1 IE based(ie~ptr),
2 ILP float,
2 IED float;

/* INUT.BLL *
input(l) = EX
input(2) = TWO
input(3) = THREE
input(4) = FOUR
input(5) = FIVE
/* 7JNC.BLr */

/* OUT.ELE *
d±ata(7) = ftc(F
put skip list('data(7) 0. 'F

Figure Q-G

Function Leclaritions and quations

71

/* LCRLFUN.A *1

LAt :proc(code) returns(ptr)\
icl
nr).nputs fixed(?) static init(l),
E2K ext entry(fixed('?)) returns(ptr),
TiO ext entry(fixed(7)) returns(ptr),
THREE ext entry(fixed(7)) returns(ptr),

*FOUR ext entry(fixed(7)) returns(ptr),
FIVE ext entry(fixed(7)) returns(ptr),

* ~~~cod(5) fixed(7) static ii(,,,,i
F float static init(0.0000),
0 float static init(O.re00)\
dcl
1 dat ext,
2 data(B) dec(15,6)\

/* rCLINP.TXT - THIS IS PART OF ALL FUNCTIONS ANL WAS
FIXEIt FOR THE THESIS v'ASE OF NUMERIC
CONTROL SYSTEMS. ~

ici
1 IA based(iaptr),
2 IAP float,
2 LAD float,(~ 1. l based(ib..ptr),
2 IBD float,
2 IBD floa~c~t,
2 ICP floa~c~t)
2 rCn float,
1 ICD baedidt,
1 IEP floa~d~t)
2 IDD float,
2 ID bfsloiat,
2 IEP aloae~t)
2 lED float;
~ IEDUT flat;

/*INFUT(1) E2K
input(2) = E2X
input(3) = TWOE
input(3) = FOHRE
input(5) a FOURE
/'pt(5 =UCL FIV
LA()=ICAA
LA OUT.ADA'P
/i*a 8) ft(LA1))

put skip list("data(8) ',A1)

Figure 8H

Tunction LeclaratioriS and Equations

* 72

/* DATAINFO.TXT */

timel fixed static init(100),
nr data fixed static init(8),
nr aa fixed static nitt 3),
ar ad fixed static init(2),
nrdd fixed static lnit(2),
nr-da fixed static init(1),
name(9_) char(E) statis init(

'UN

'X2NIl
ALI
AD2

'E2K
'DA1

Figure 9

LATINFO .TX1

473

73

__ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _

/* FORM.SUB *

XS UB
REFORM AA.TXT AA.TAT
REFORM AtD.TIT AD.TTT
REFORM ECt.TXT rr.TTT
REFORM LA.TXT rA.TTT
PLI MONITOR

REFORM INPUT.AA. INPUT.TTT
REFORM rCLFUN.AAA flCLFtN.TTT
PIP FUNC.'rXT=FUNC.AAA
REFORM OUT.AAA. OUT.TTT
PLI AA
PIP UN.REL=AA.REL

REFORM INPUT.BAA INPUT.TTT
REFORM DCLFUN.BAA DCLYUN.TTT
PIP FUNC.TXT=FUJNC .Bkk
REFORM OUT.BAA OUT.TTT
PLI AA
PIP X1N.REL=AA.REL

REFORM INPUT.CAA INPUT.T'TT
RIFORM DCLFJN.CAA DCLFTJN.'TTm
PIP FUNC.TXT"=FJNC.CA.A
REFORM OUT.CAA CUT.TT
PLI kA
PIP X2-N1.REL=AA.RFL

REFORM I.NPUT.AAD INUT.'rTT
RIEFORM . CLFUNA.Ar LC~N.TTT
PIP FUNC.TXT=FUNC.AAL
REFORM OUTAE OUT.TTT
PLI Ar
PIP ADl.REL=Ar.R7EL

REFOR' INPUT.BAr INPUT.TTT
RtEFORM LCLitJN.BAr rCLFUN.T'I"T
PIP FUNC.TXT=FUNC.BAL
REFORM OUT.BAZ OUT."?TT
PLI AD
PIP ALZ.RBL=AI,.REL

Figure 1F.A

FORM .3 U

74

L

REFORM INPUT.Art INPUJT.WTT
REFORM DCLFUN.ADD DCLFJN.TTT
PIP FUNC.TXT=FUNC.tlL
REFORM OUT.Arr OUT.TTT
P1.1 DDI ?IF 9K.RZL-rr.REL
REFORM INPUT.B1.D INPD.ITTT
REFORM LCLFUN.BIL1 tCLFDN.T',
PIP FUNC.TXT=FUNC.BrD
REFORM OUT.BLD CUT.TTT
P1.1 LE
PIP E2K.REL=tB.REL

REFORM INPUT.A1.A INU"IT.TTT
REFORM LCLFUN.ALA lE4LFUN.TTT
PIP FUNC.TXT=FU.NC.AtA
REFORM OUT.ALA OIUr.TTTi PUI LA
PIP I)Al.REL=DA.ft!L

P1.1 PRINT
LINK PRINT

j LINK ANSiER-MONITOF ,UN 1X1N ,X2Nl ,AD1 ,AD2 DAl .7-K Sr-K

Figure teB

FORM.SU?

.I7Z

* --- -- ~.,r-An

r. TEST RESULTS ANt PROGRAM EXECUTION

As mentioned previously, once the xzwgzau ANSWER.COM is

developed, all that is necessary is to enter ANSWER to the

CP/M operating system promot. Figure 4B and ' should be

referenced during this discussion. Figure 11 is a parttal

printing of what will be on the display when the program is

executing. The printout is for the sample problem but with

the NELAY set to zero and the rLIIT shortened. The first

thing to note is that the functions are not executed in ,rder

and some are executed several times during each clc.k. Time e

actually runs from rCLOCK = 0 to ACLCCK = 1. By associating

the data element number with the order of the function names

in -igure 9 the user can determine which funtion is Deing

calculated or called. As an example the first element

returning an answer in Figure 11A is eletrent 4 which eqiates

to Al in Figure 9. The next elements are E, e, and 7 that

equate to AD2, SK, and E2K respectively. An important note is

that since there is no delay, function 3 (1A1) or the di:ital

to analog function is calculated or called at time 0. This

will not be the case when discussed later on. 7he only

function that has a value is element 1 or JN. There is no

further changes in the data until DCLCC1 = I whi:h is the

same time as ACLOCK - 0 for the second time. At this Doint

the analog to digital conversion has taken place for the

first time, the computer does internal calculation, digital

to analog is complete since there is no delay, and the analog

76

, iL. I

plant starts to integrate the signal. This is really the

start of the sample since the computer is operating on the

initial conditions for the first ten counts of the analog

clock. By the first sample period after the initial values

(ECLOCK = 2) the controller output changes to -1 and the

plant output is at the half way value of the input. _y the

seiond sample period after the initial conaitor.s I;CLO., "

3) the plant output is equal to the forcing funt-tion innut

ana the controller output is 0. It shculd he noted tha*. in

all programs the zero point of tbe sam.le period al',ajs

starts at ICLOCK = 0 so that the initial conditions :a-, be

rraphed. The above example Is a theoretica. non reali-atle

simulation of a control system with no calculation delays.

The results obtained are identical to classlial textck

exampl es.

Figure 12 is the identical probl-rm dis.'ussed w*ith the

delay equal to zero but it shows what tte display file inoks

like after the utility program PRINT.PLI is run. The results

in Figure 12 are obviously more readable sinc- the f:n,:tin

name and final value are not preserted until after all

calculations are comrlete.

Figure 13 is a partial printin cOf the results ., sing

the full example presented above with a forty percent lelay.

This means there is four ACLOCK counts after the rCLCCK

before the digital to analog values are ivailatie. !be

important points to note are that the 1l,ital t, analoa

77

t _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

values (DA1 or function 8) do no change until the analog

clock (ACLOCK) is equal to 4 during each digital cio:k, the

overshoot is only about 2.5 percent, and it takes five times

as long to reach stability or the input signal. These results

are much more representative of a real world problem and the

I problems that would be encountered with a true herdware

implementation.

76

0 rCLOCK
data(4) = 0.000000E+00
data(5) = 0.000000E+00
data(6) = 0.000000E+00
data(7) = 0.0OOOOE+Oe

0 ACLOCK 0 TIME
data(8) = e.OeOOOOE+o0
data(1) = 1.00000E+00
data(2.) = 0.000000E+e0
data(3) = O.O000OE+0O

1 ACLOCK I TIME
data(1) = 1.000000E+00

r data(2) = o.eoooooL,0 O
data(2) = 0.000 00
data(3) = Z.O000E+0Z

ACLOCK TI-F
data(1) = 1.00000E+00
data(2) = 0.0000001+0
data(2) = O.0000(E+00
data(3) = O.0 000E+0

1 DCLOCK
data(1) = 1.000000E+00
data(4) = I.00000E+(o
data(3) = .00000+,oo
data(5) = 0.000000 +00
data(6) = 1.000OOE+V0
data(6) = 1 OCOOOO -+C,
data(7) = 1.0000eoE+.Io

0 ACLOCK i: TIPrY
data(7) = 1.0O0000E+0
data(E) = 1.0000002+0
data(1) = 1.00000E+0
data(2) = £.000000E-Qi
data(2) = 1.0000OOE-01
data(3) = It. 99C999E-0-,

1 ACLOCK 11 TI :E
data(1) = 1.00£0000E+00
data(2) = 2.0000OOE-01
data(2) = 2.00000E-01
data(3) = 1.999G9E-e2

2 ACLOCK It: rip:
data(1) = 1.0ZOOOE+40
data(2) = 3.0e00kE-C1
data(2) = .00000 -V
data(3) = 4.4 9ccccSE-2

Figure 11A

ANSWER.CO Runtime Results

9 ACLOCK 19 TIME
data(1.) = 1.0e0e00E+o
data(2) = 1.000000E+00
data(2) = i.0e.00,e0E+00
data(3) = 0.500000E+00

2 rCLOCK
data(1) = 1.000000E+'0
data(4) = 1.000000E+00
data(3) = 0.500000E+00
data(5) = 0.500000E+00
data(6) = 0.500000E+00
data(6) = 0.50000E+ee
data(7) = -1.000000L+q

0 ACLOCK 20 TIYE
data(7) = -1.000e0E+00
data(8) = -1.000000E+(0
data(1) = 1.000000E+00
data(2) = 0.900000E +0
data(2) = 0.900000E+00
data(3) = 0.595000E+00

C ACLOCK 2C TI'E
data(1) = 1.0eo oE+00
data(2) = 1.49e16E-0
data(2) =
data(3) = 1.O00000E+kO

3 DCLOCK
data(1) = 1.O00000E+00
data(4) = 1.00O000E+CO
data(3) = 1.0o0o0E +00
data(5) = 1.000000E+00
data(6) = 0.000000E+0e
data(C) = z.00eo E3+oe
data(7) = O. 0000E+g0

0 ACLCCK 30 TIYE
data(7) = 0.000000E +0
data(8) = 0.00O0E+AO
data(1) = 1.oeooooE+0o
data(2) = 1.49e016E-08
data(2) = 1.4& :0116E-08
data(3) = 1. 0Eeo

1 1CLOCK 31 TIME
data(1) = 1.OZOOOOE+0
data(2) = 1.490116E-Oe

- data(2) = 1.490116E-08
data(3) = 1.000000E+.o

Figure 11B

ANSWER.COM Runtime Results

8 e

. I
!7 Iij

TIME=O
UN - 1.000000
X1N =0.000000
X2N1 0.000000
AD1 =.000000

At2 = 0.000000
EK =0.000000
E2K = e.000000
rAl = 0.00000
TIME=l

UN = 1.00000
XlN =e.000000
X2N1 =e.z0000

= 0.000000
A2 = 0.000000

E2K = 0.000000
rA1 = .000000

TIM3=9

UN = 1.000000
X1N = 0.e00000
X2N =e.000000

£ kE1 0.5000000

Ar2 = e.000000
EK =O.0000
E2E =0.000000

rAI = 0.00000
TIME=10

UN -1.00000

XIN = 0.1 0000
X2NI 0 e.004999
ADI 1.000000

AL2 0.000000
EK = 1.000000
i2K = l.00e0000

flA = 1.000000
TIME=1l

UN =.-00o0
XIN = 0.20000

X2N1 : Z.1999
ADI 1.000000
A L2 =0.000000
EK =1.000000
E2K = 1.000000
fAl = 1.000000

Figure 12A

PRINT.PLI With Zero Lelay

El

TIME-19
UN = 1.000000
X1N = I.000000
X2N1 = 0.500000
AD1 1.000000
A£2 = 0.000000
EK = 1.000000
E2K = 1.000000
tAl = 1.000000
TIME=20

UN =1.000000
XUN 0.900000
X2N1 = 0.595000
AD1 1.000000

AL2 - 0.500000
EK = 0.500000
E2K = -1.000000

EAl = -1.000000

TIME=29
UN = 1.000000
1N = 0.000000
X2N1 = 1.00U00
AUl = 1.000000
AL2 0 0.5 0000
"- C.500000
E2& = -1.000000
:Al = -1.000000
TIME=30

UN = 1.000000
X1N - 0.0)0000
X2N1 1.000000
Al = 1.000000
Al2 = 1.000000
EK 0.000000
E2K = 0.000000
lAl = 0.00000
TIME=31

UN = 1.000000
XIN = 0.zooooo
X2N1 = 1.000000
.Ak = 1.000000
AL2 = 1.000000

E 0.000000

LAt = 0.000000

Figure 12B

PRINT.PLI 4ith Zero Lelay

82

L IV _ _ _ _ _ _

TIME=O
UN 1.000000
XN = 0.000000
X2N1 = 0.000000
ADI 0.000000
Ar2 = 0.000000
EK = 0.000000
E2K - 0.000000
EAt =f.000000

TIME=i
UN = 1.000000
X1N - 0.000000
X2N1 = 0.000000

ALI - 0.000000
Ar2 (0.00000
EK = .0 z000

E2K - 0.00000
rA1 e 0.000000

TIME=9
UN - 1.000000
X1N - 0.000000
X2NI = 0.000000
ALI - 0.000000
Af2 - 0.000000
1 K =.000000
E21 = 0.000000
rAl - 0.0000
TIME=10

UN = 1.000000
X1N - 0.0000 0
X2N1 = 0.000000
ALt = 1.000000
AL2 -e.000000

Ex 0.67031
E21 - 0.670319
rAt - 0.000000
TIME=11

UN - 1.000000
XIN 0.o000e
X2NI = 0.000000
Arl 1.000000
AD2 - 0.000000
E K = 0.670319
E2K = 0.670319
LAI - .000000

Figure 13A

PRINT.PLI 4itb Forty Percent relay

r I - ._

TIME-12
UN = 1.000000
XIN = 0.000000
X2N1 = 0.000000
ADI - 1.000000
A12 = 0.000000
EK = 0.670319
E2K - 0.670319
rA1 = 0.000000
TIME=13

UN - 1.000000
X1N = 0.000000
X2Nt = 0.00000
ADI = 1.000000
Ar2 = .e00000
EK e 0.670319
E2K - 0.670319
DA = -.. 000000
TIME=1

UN - 1.000000
X1N = 0.067031
X2N1 = 0.003351
ALt = 1.000000
AL2 C 0.000000
EK = 0.670319
E2K e 0.670319
rAl - 0.670319
TIME=15

SUN = 1.000000
X1N 0 0.134063
X2N1 =0.01ZZ06
Al = 1.000000
AD2 = 0.000000
El 0.670319
E2K 0 0.670319
DAI = 0.670319

TIME=49
UN - 1.000000
X1N = e.041242
X2N1 = 1.016266
ALI - 1.000000
AD2 e 0.922099

=EK 0.05221
E2K = -0.0455
DA1 =-k.;45 -

Figure 13

PEINT.FLI With Fort' Percent relay

LAL4

TIME=50
UN - 1.000000
XIN = £.0315G7
X2Nl = 1.019908
AUl = 1.000000
AD2 = 1.016266
EK = -0.010903
E2K = -e.014894
BA1 = -e.0'6455

F TIME=51
UIN -1.000000

XIN =.-219I
X2N1 = 1.022565
ALl = 1.00000
AD2 = 1.016266

E2K -e.014694

TIME=52
UN 1.-000
XlN e 0.012306
X2N1 = 1.024298
ALl 1.000000
AL2 = 1.0162t6
EK -0.010903
E2K =--.01404
DA1 -. O.6455
TIME=53

UN = 1.0 0£0
XIN M .60ee
X2N1 = 1.025 47
Arl -1.0000

AD2 = 1.0162t6
E= -0.010903
E2K --,.-146
flAI -0.OZ6 5
TIME=54

UN = 1.000000
XlN = £.0£I17o
X2N1 = 1.025238
Al = 1.000000
ADZ = 1.01E2c6
EK = -0.0109 3
E2K =-C.1484

A1 = -k .0 14S:4

Figure 11C

PRINT.PLI With Forty Pereent Delaj

Ei t

TIME=55
UN = 1.000@00
XIN = -e.0e0318
X2N1 = 1.0252E1
ALl = 1.300000
A2 = 1.016266
El -e.010903

E2K = -0.014894
rAl -e.014894
TIME-56

UN = 1.000000
X1N = -0.001S07,.X2N1 =1.OZ5175
A1 = 1.000000

: Ar2 =1.016266

EK -- 0.01090Z
E2 K -0.014894
rAl = -0.014894
TIME=57

UN =1.00000

XIN =-.00327
X2NI = 1.02491S
Arl = 1.000000
AD2 = 1.0162t6
EK -0.010903
E2K = -e.014894
DAI =

TIME=99
UN -1.0000@

XIN - -0.000246
X2N1 = f.999450
ADt = 1.000000
Ar2 - 1.000391
EK = -e.000262
E2K =.-e1e5
rAl = 0.001068
TIME=100

UN = 1.000000
XIN = -0.0001c
X2N1 =0.99e431

AD1 = 1.000000
AL2 - 0.99450

EK - 0.000368
E2K =.00006
LAl = 0.001068

Figure 1L

PRINT.PLI With Forty Percent relaj

VIII. CONCLUSIONS

A major point of this thesis was to demonstrate the

feasibility of writin6 a computer 3roera, th.at 'an be used on

a microcomputer by a novi'ce programmer to tevelop o-trol

system models, simulation, and realization. .is tyTe

system was not possible in the past due to syster rtmory

limitations and unaiceptable software programs. rhe ap.'roa:h

taken in this project was to use nommercially ivailable hieh

level programming languages to reiuce the zoinz t'Te. As was

discussed in this thesis, the lan.uaees are not suff'iciEn: in

themselves ani more than one lan-ua-.e was needed to ccn-olete

the Droje,.'.t. It is apparent th:at a lanFuafe that has tbe

features of a good relational database :ouple.1 with --tre-ely

o ;ood mathematical fun:tions and t.e aniliti to -orm.:nI-a e

with the computer har:tware is a :e'cessity fo; this ty!'e -

system to be a useful tool.

The Inportance of recognizin.g t-at :ont:ol s5stes :.;.n be

moeled and manipulated in a database ia.not .;c ov,-rlooke".

* Ly carryin, this approa:: to tz ln it it is possitle -o

develop a large database of 7ontrol ftnittoas t.hat ? c' l. be
4

recallel and used like a library. Once t-e database is fo:med

it ;ould be manipulated by artifi.ial intelllh.eniie. Te

computer itself could te told to levelop a contrcl syst n to

matih a desired set c; waveform's , the information st,^*red

or at least find a best fit solution. Missing parameters

could be searzhed for, cr best fit solutions ccuid ptssitbly

be provided as easily as usine the the present databae

systems to find phone numbers and names.

It is significant that source code was used for the

intermediate language. A special purpose pro.7ram 7oul have

been written that provided direct funi-tion calls to 5rezif'l

hardware; however, by using high level language sour;-e -ode

the program will run on many different rr.a,:hine_ just b-: sin

their resident :ompilers. This was demionstrated by

transporting the proerams to four differe!t mahines with

different operating environments. ly using .ource :ode tre

problem was kept at a high level of abstraction. The n-o.;:aTs

the computer needel to write were sirilar to Fnglish whlch

helped lessen the confuslo while developini more than one

hundred files and programs.

A fact that became very apparent early in the Drogram

development was the need for a -orre.tion factcr tn ta'-e in-o

account the delays in the system due to calculations and

conversions. This jrcblem is aadressed in many models but it

is seldom considered in most co.rputer solutions sin-e the

computation time is usually insignift.,ant. it .,as aeterminel

that solving for all possible delays was next to i!pcss.bl:

especially when iP1lemented since the hardware itself wou':

be variable. A correction factor is Lrovilded that w'rks very

• well with the.exam;le problem. ?urtner Investi.ation needs to

Se

Vi

be done using other functions to test the results; however.

it is felt that the factor will work with any control system

designed to have a zero steady state error slgnal. The basic

approach is to have the designer develop the model assuming

there are no delays and then estimate the delays to be

applied to the correction factor. If the factor does not work

then try to develop one from other experience. If this fails

then use benchside engineering, make estimates and watch what

the results do.

Appendix C contains several graphs of data coverink the

example problem. A variety of delays were introduced ani the

results with and without the correction factor are provided.

The problem was initially designed assuming no delay and tnen

corrected for with the correction factor. It should be noted

that in all cases, even with delays up to C per"ent.

acceptable results were produced within five t.mes the

initial sample period design. This Is significant since the

uncorrected functions had severe problems even with the nall

aelays. 'dhen using the correction factor the longer delays

corrected better and it is felt ttat this is due to

outputting a control signal closer to the time the input was

going, to sample the result of the control. If a signal is

output and sampled immediately, the probability that the

response to that signal is the one observed is higher than if

a long delay were encountered possibly resulting in seve:e

data, error. Even thouth the system was designed for a step

S8E

. 5.

input there is evidence that the correction factor works very

well for a ramp input. This is also shown in Appendix C.

As a final note the power of a graphical dynamic display

for the designer is invaluable. Reading through many pages of

data makes it very difficult to see where the significant

changes are being made. A real time plot will cut design time

by an order of magnitude.

.0

D

IT

APPENtIX A

rBASE II PROGRAMS

CINIT rBF : CINIT FMT : CI41T ZIP :CINIT ZPR
*CMENU CMr : CMENU FMT : CMENU ZIP : CMENU ZPR
*CONTROL CMr : PARAMS LEF : rATA. CMr : rBASE COM

DBASEAPP OVR : DBASEBRO OWR : DrASEJOI Ofli : rBASFMAI GyP
DBASEMOD 0?R : DBASEMSC OVE : rpAsEmSG COM : LBASERPG OVR
LBASESRT OVR : LBASETTL OVR : LBASEupr 0vah DBINSTL, COM

*PARINDEX NrX : SEORM SUB : LCLFUN CMD : FORM SUB
FORKi CML : INIT LBF : INIT MEM : MENU CtMD
MENU FM? : MENU ZIP : MENU ZPR : STRT EIF
STRT MEM : SUBMITi COM : ZIP COM : ZIPIN COM
XSUB COM : SHORT CML : rCLMON CML :MONrCL cr-l
PROC CMD : DATA CMD : FORM CML REFORM CMD

Figure 14

Programs Required for ratabase Operation

== T i. : .. - . -- ----...

* MENU.CMr

SET TALK OFF
RESTORE FROM INIT * See Figure 2
USE INIT * See Figure 3
SET FORMAT TO MENU * See Figure 15& and 15P
LO WHILE T

READ
tO CASE

CASE ACTION =0
ACCEPT 'DO YCJ REALLY WANT TO QUIT? Y/N " TO CN
IF CN = 'Y

QUIT
ENDIF

CASE ACTION = '1'
RESTORE FROM INIT
USE INIT
COPY TO PARAMS
USE PARAMS
DO CMENU

CASE ACTION = '2'
ACCEPT 'ENTER NAME OF OLr PROGRAM FILE " TO PARAY
RESTORE FROM &PARAM
USE &PkRAM
COPY TO PARAMS

* "-USE PARAMS
LO CMENU

CASE ACTION = '3'
ACCEPT 'ENTER NAME OF FILE TO SAVE PARAMATERS IN " TO ?AhAM
SAVE TO &PARAM
COPY TO &PARAM

CASE ACTION = '4'

rISP ALL FUNCNAME
ACCEPT "FRESS RETURN TO CONTINUE TO CN

CASE ACTION = '5'
ACCEPT 'ENTER 4kME OF OLr PROGRAM iILE T P2 PR Ail
RESTORE FROM &PARAM
USE &PARAM
COPY TO PARAMS
USE PARAMS
rO SHORT

ENrCASE
* .ENErO

.g.,

Sfile MENU

ENTER 0 TO QUIT
ENTER 1 TO START A NEW PROBLEM
ENTER 2 TO RECALL AN OLL PROKLiM
ENTER 3 TO SAVE PRESENT PARAMATERS
ENTER 4 TO DISPLAY PRESENT FUNCTIONS
ENTER 5 TO CHANGE INITIAL CONDITIONS ONLY

This will allow the program
to compile much faster

ENTER ACTION #ACTION

Figure 15A

MENU

* ENU.FMT
0 7,17 SAY "ENTER 0 TO QUIT"
@ 8,17 SAY ENTER 1 TO START A NEW PROBLEM"
0 9,17 SAT "ENTER 2 TO RECALL AN OLr PROBLFM"
0 10,17 SAY "ENTER .3 TO SAVE PRESENT PARAMATER3"
L 11,17 SAY "ENTER 4 TO LISPLAY PRESENT FUNCTIONS"
@ 12,1? SAY "ENTER 5 TO CHANGE INITIAL ZONDITIONS ONLY
@ 13,28 SAY "(This will allow the program"
@ 14,30 SAT "to compile much faster
0 16,23 SAY "ENTER ACTION"
O 16,36 GET ACTION

Figure 151

MENU Format

9t i~- .~.

.CMEMU.CM
SET FORMAT TO CMENU * See figure 16A and ICB

DO WHILE T
READ
DC CASE

CASE ACTION = "0'
PACK
INDEX ON FUNCTYPE TO PARINEEX
USE PARAMS INDEX PARINrEX
DO CONTROL

CASE ACTION = 'I'
ERASE
LISP ALL FUNCNAME
ACCEPT 'ENTER RECORD NUMBER TO EIIT " TO CN
EDIT &CN

CASE ACTION = '2'
APPEND FROm INIT * See figure 3
ELIT #

CASE ACTION = 3"
ERASE

jLISP ALL FUNCNAME
ACCEPT 'ENTER RECORD NUMBER TO DELETE " TO CN
IELETE RECORD &CN

CASE ACTION = '4'
ERASE
LISP ALL FUNCNAME
ACCEPT 'ENTER RECORD NUMBER TO RECALL " TO CN
RECALL RECORL &CN

CASE ACTION = '5'
SET FORMAT TO CINIT * See figure 17A and 17B
REAL
SET FORMAT TO CMENU * See figure 16A and !EF
ACCEPT 'PRESS RETURN TO CONTINUE " TO CN

*- CASE ACTION = '6'
SET FORMAT TO MENU * See figrre 15A and 151
RETURN

ENECASE
ENIDMO
RETURN

94

Am

***$* file CMENU ***

ENTER 0 TO COMPILE A PROGRAM
ENTER 1 TO EDIT TRANSFER FUNCTIONS
ENTER 2 TO ADL k TRANSFER FUNCTION
ENTER 3 TO DELETE A TRANSFER FUNCTION
ENTER 4 TO RECALL A DELETED TRANSFER FUNCTION
ENTER 5 TO CHANGE INITIAL CONDITIONS
ENTER 6 TO RETURN TO THE MAIN PROGRAM

ENTER ACTION #ACTION

Figure 16A

CMENU

CMENU. FMT
@ 3,15 SAY "ENTER 0 TO COMPILE A PROGRAM"
@ 4 15 SAY "ENTER 1 TO EDIT TRANSFER FUNCTIONS"
@ 5,15 SAY "ENTER 2 TO ADD A TRANSFER FUNCTION"
@ 6,15 SAY "ENTER 3 TO DELETE A TRANSFER FUNCTION"
L 7.15 SAY "ENTER 4 TO RECALL A L,&LETED TRANSFER FUNCTION"
@ 8 15 SAY "ENTER 5 TO CHANGE INITIAL CONDITIONS"
@ 9,15 SAY "ENTER 6 TO RETURN TO THE MAIN PROGRAM"
C 12,22 SAY "ENTER ACTION"
C 12,35 GET ACTION

Figure 16B

CMENU Format

95

,AD-A12 8 47 INTERACTIVE MICROCOMPUTER CONTNOL SYSTEM MODELING AND I2
REALIZATION USING A DATABASE FON AUTOMATIC PROGRAMMINO
U) NAVAL POSTGRADUATE SCHOO MONTEREY CA N F JOHNSRSD

UNCLASSIFIED DEC 82 FG92 . N

EEEEEEEEEELs

'I'

"&g L-

;1=

1L.4

111.25ILZ11.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-193.A

I

- 5 nl! i -.-------- *---------l--..--'-- - - ' - --

***** File CINIT **

DLIMIT #DLIMIT (This is the number of times the computer
will do calculations. ie. The number of
sample periods.)

ALIMIT #ALIMIT (This is the number of times each analog
calculation will be done during each sample
period. Effects how accurate the analog plant
is modeled.)

ELAY #rELAY (This is the number of analog calculations done
before the digital to analog is availible.)

T #T (This Is the sample rate of the digital system.
You must provide it if you are going to use it
in your equations.)

Ti #T1 (This is the sample rate of the analog system.
It is usually the same as T above during design:
however, for simulation it usually works out to
be T divided by ALIMIT since ynu usually want a
more accurate plot of the analog plant to see
what happens between the digital sample periods.
You must provide TI if you use it in your equa-
tions.)(This is effectively double rate sampling.)

Figure 17A
CINIT

19-1

CINIT.FMT
2. 3 SAY "DLIMIT"

@ 2,10 GET ;LIMIT
@ 2,24 SAY (This is the number of times the computer"
@ 3,25 SAY "will do calculations. ie. The number of
@ 4,25 SAY "sample..periods.)"
@ 5, 3 SAY ALIMIT
@ 5,10 GET ALIMIT
@ 5,24 SAY :(This is the number of times each analog"
@ 6,25 SAY calculation will be done during each sample
@ 7,25 SAY :period. Effects how accurate the analog plant"
@ 8,25 SAY is modeled.)"
@ 9, 3 SAY "ELAT"
@ 9,10 GET DELAY
@ 9,24 SAY "(This is the number of analog calculations done"
@ 10,25 SAY before the digital io analog is availible.)"
@ 11, 4 SAY "T"
@ 11,10 GET T
@ 11,24 SAY "(This is the sample rate of the digital system."
Ce 12,25 SAY "You must provide it if you are going to use it"
@ 13,25 SAY "in.your equations.)"
0 14,4 SAY "Ti
@ 14,10 GET T1
@ 14,24 SAY "(This is the sample rate of the analog system.."
C 15,25 SAY It is usually the same as T above during design;
@ 16,25 SAY "however, for simulation it usually works out to
0 17,25 SAY "be T divided by ALIMIT since you usually want a"
@ 18,25 SAY more accurate plot of the analog plant to see
R 19,25 SAY "what happens between the digital sample periods."
@ 20,25 SAY "You must provide T1 if you use it in your equa-"
@ 21,25 SAY tions.)(This is effectively double rate sampling.)"

Figure 173

CINIT Format

9?

., :ii ____ - _ ____.,________-____________-_____

* CONTROL.CMr
DO DCLMON
STORE 0 TO IND
LOCATE FOR FUNCTYPE = 'AA'
Do PROC
STORE 0 TO INI
LOCATE FOR FUNCTYPE = 'A '
DO PROC
STORE 0 TO IND
LOCATE FOR FUNCTYPE = 'ED'
DO PROC
STORE 0 TO IN
LOCATE FOR FUNCTYPE = 'DA'
LO PROC
DO DATA
DO FORM
QUIT TO -SUBMIT1 FORM"
SET TALK ON
RETURN

I

F9

*DCLMON.CMD

SET ALTERNATE TO B:ECLMON *B: not needed if single disk
SET ALTERNATE ON
LOCATE
£0 WHILE .NOT. 10?

? '+IUNCNAME+' ext entry(fixed(7)) returns(ptr),'
CONTINUE

ENrLO
COUNT FOR SAVEDATA TO DATA1
? T float static ext lnit('+str(T,8,4)+'),
? TI. float static ext init('.str(T1,8.4)+),
? DLIMIT fixed static init('+ str(DLIMIT,4)+'),'
7 'ALIMIT float static init('4 str(ALIMIT,4)')V'

? delay float static init('+ str(BE1"AY,4)+'),'
7 1 idat ext,'
7 & 2 data('+str(DATA1,3)+') dec(15.6)'
SET ALTERNATE OFF
STORE 'AA' TO T:NAME
DO MONDCL
STORE 'AL' TO T:N&ME
£0 MONDCL
STORE 'L£' TO T:NAME
LO MCNDCL
STORE 'LA' TO T:NAME
LO MONLCL
RETURN

*MONLCL.cmr

SET ALTERNATE TO B:&T:NAMZ B: not needed if single disk
SET ALTERNATE ON
LOCATE FOR FUNCTYPE - T:NAME
1F SOF THEN

ELSE
£0 4HILE .NOT. EOF
7 'duminy-ptr - '.funcname+'kcode)\'
CONTI NUE

ENDDO
ENII
SET ALTERNATE OFF
RETURN

* ROC.Cmr
EO WHILE -NOT. EOF
STORE IND+. TO INr
STORE 'LCLFUN.'+$(FUN,INL,1)+FUNCTTPE TO T:NAME
SIT ALTERNATE TO 3:&T:N&ME * B: not needed if single disk
SET ALTERNATE ON
? FUNCNLME+':proc(code) returns(ptr)V'
? 'del'
? 'nr inputs fixed(?) static init(''NR:INPUTS+'),'
? INPifT:A+' ext entry(fixed('?)) returns(ptr),'
? INPUT:B+' ext entry(fixed(7)) returns(ptr),'
7 INPUT:C+ ext entry(fixed(7)) returns(ptr),'
? INPUT:Dt' ext entry(fixed(?)) returns(ptr).'
? INPUT:E+' ext entry(fixed(7)) returns(ptr),'
? 'cod(5) fixed(?) static init(,+klP2r+ , *L1p2r+;

'+Cip2L+, L1P2L+'.(+E1P2L+').'
STORE STR(Fl,8,4) TO TEMPOUT
? 'F float static init('+TEMPOUT+'),'
STORE STR(PKL,8,4) TO TZMPOUT
? '0 float static init('+TEMPOUT+')\'
? "dcl'
? ' I dat ext,'
? # 2 data('+STR(datal,3)+') dec(15,6)V'
SET ALTERNATE OFF
STORE 'INPUT.'+$(FUN,INt,1).FUNCTYPE TO T:NAME
SET ALTERNATE TO B:&T:NAME * B: not needed if single disk
SET ALTERNATE ON
? 'input(i) = '+INPUT:A+'\'
? 'input(2) = '+INPUT:!B+'\'
? 'Input(3) = '+INPUT:.C+'\
? 'input(4) = '+INPUT:r*'\'
7 'input(5) = '+INPUT:E4WV
SET ALTERNATE OFF
STORE 'FUNC.'+$(FUN,INL.,1)+FUNCTYPE TO T:NAME
SET ALTERNATE TO B:&T:NAME * B: not needed if single disk
SET ALTERNATE ON
? EQUATION
SET ALTERNATE OFF
STORE 0 OUT.'+$(FUN,INr,1)+FUNCTYPE TO T:NAME
SET ALTERNATE TO B:&T:NAME * B: not needed if single disk
SET ALTERNATE ON
IF SAVErATA

STORE ELEMENTS+l TO ELEMENTS
7 'data('+STR(ELEMENTS,3)+'= ftc('.LATANAME+')\'
? Iput skip list('d~ata(]+STR(ELEMEN,1TS,3)+L,)
?? rATkN&ME+')\'

ELSE
?

SET ALTERNATE OFF
CONTI NUE

ENILO
MEURN

,.'

100 ~

* DATA.CMD
SET ALTERNATE TO B:rATAINFO * B: not needed if single disk
SET ALTERNATE ON
? 'timel fixed static init('+STRMLIMIT*LIMIT,4)+),'
? 'nr data fixed static init(' STRR(ATAl,3)+'),
COUNT-FOR SAVEDATA .AND. (FUNCTYPE = 'AA') TO IND
? 'nr aa fixed static init('+STI(IND,2) '),'
COUNT FOR SAVEEATA .ANr. (FUNCTYPE f "AD') TO IND
? 'nr ad fixed static init('*STR(IND,2) '),'
COUNT-FOR SAVEATA .ANL. (FUNCTYPE = "rr') TO IND
? 'nr dd fixed static init('+STR(INE,2)+'),'
COUNT FOR SAVELATA ,ANL. (FUNCTTPE = 'rA') TO [ND
? 'nr da fixed static init('+STR(INL,2)+'),'
? 'naie('+STR(DATA1,3)+') char(e) static lnit('
STORE 'AA' TO T:NAME
DO ATAI
LOCATE FOR FUNCTYPE = 'AA'
IF .NOT. EOF
??''9

ENDIF
STORE 'AL' TO T:NAME
LO DATAl
LOCATE FOR FUNCTYPE ='A'
IF .NOT. EOF

??D
ENDIF
STORE 'E' TO T:NAME
LO LATAl
LOCATE FOR FUNCTYPE = 'DD'
IF .NOT. EOF

ENDIF
STORE 'rA' TO T:NAME
LO LATAl
2? ').

SET ALTERNATE OFF
RETURN

* DATA1.CMD
LOCATE FOR SAVEL.TA .AN. (?UNCTYPE = T:NAME)
DO WHILE .NOT. EOF

? ['J+UNC4kME+C'l
CONTINUE
IF .NOT. EOF? ?

ENDIFENDDO

RETURN

'le
*

* ,

*FORM.CME
SET ALTERNATE TO FORM.SUB
SIT ALTERNATE ON
? '3:' B: not needed if single disk
? 'XSUBI
? 'REFORM AA.TXT AA.TTT'
? 'REFORM AE.TXT Ar.TTT'
? 'REFORM DD.TXT DD.TTT'
? 'REFORM tA.TXT EA.TTT'
? 'PLI MONITOR'
STORE 'AA' TO T:NAME
LO EOLFUN
STORE 'At' TO T:NAME

* Do DCLFUN
STORE 'It' TO T:NAME

STORE 'DA' TO T:NAME

? LINK PRINT'
? 'LINK ANSWER-MONITOR'
LOCATE
DO WHILE -NOT. 1OF
?? ','+TRIM(FUNCNkME)
CONTINUE

ZNDDO
7

* -' SET ALTERNATE OFF
RETURN

B CLFUN.CMt
LOCATE FOR FUNCTYPE - T:NAME
STORE 0 TO INr
LO WHILE .NOT. EOF

STORE IND+I. TO IND
STORE $(FUN,INL,1)+FUNCTYPE TO EXT:NiAME

* LO REFORM
CONTINUE

EN LL0
RETURN

*REFORM.CMD

? 'REFORM INPUT. '+EXT:NAME4' I'4PUT.TTT'
? 'REFORM I:CLFUN. +EXT:N~AMFE+' rCLFUN.TTT'
? 'PIP FUNC.TXT-FUNC.'.EXT:NAME
? 'REFORM OUT.'+EXT:NAME+' OtJT.TTT'
? 'PLI '+FUNCTTPE
? 'PIP '+TRIMl(FUNCNAME).'.REL'iFUNCTYPE+'.REL'
RETURN

* 102

Siv
* SHORT.CMD

SIT FORMAT TO CINIT ' See figure 1?k and 17B
READ
SET TALK OF
SET ALTERNATE TO B:BCLMON *B: not needed if using a single disk
SET ALTERNATE ON
LOCATE
ZO WHILE .NOT. EO

? J " FUNCNAMI ' ext entrY(fixed(7)) returns(ptr),'
CONTINUE

EN££O
COUNT FOR SAVErATA TO rATA1
7 " T float static ext init('+str(T,8,4)+'),"
? " T1 float static ext init('+str(T1,8,4)+'),'
7]LIMIT fixed static init('+ str(LLIMIT,4) '),'
? ALIMIT float static init('+ str(ALIMIT,4)+'),'
7 " delay float static init('+ str(BELAY,4)+'),'
2 1 dat ext,"
? " 2 data('+str(tATal,3)+') dec(15,6)'
SET ALTERNATE OFF
SET ALTERN&TE TO SFORMoSUB
SET ALTERNATE ON
? "XSUB"
? 'B:" P B: not needed if using a 4ingle disk
? 'PLI MONITOR'
? 'PLI PRINT'
? 'LINK PRINT'
? 'LINK ANSWER-MONITOR'
LOCATE
LO WHILE .NOT. EOF
?? ','+TRIM(FUNCNAME)
CONTINUE

ENELO

SET ALTERNATE OFF
QUIT TO 'SUBMIT1 SFORM'
-ETURN

if - i

ifiw
APPENLIX B

P1.11-80 PROGRAMS

AA. PLI : At P1.1 : rA P1.1 : LCLINP AX '
DD P1.1 : LINE COM : VONITOR P1.1 : P1.1 COM
P1.10 OVL : PL1. OVL : P1.12 OVL : PLILIB1 IL
PIP COM : REFORM PLI : REFORM RETJ : REFORM COm
REFORM SYM : tCLMON TIT : AA TXT : AL TXT*
LL TIT : LA TXT : LCLFUN AAA : INPWUT AAA.
FUNC AAA : OUT AAA :DCLFUN BAA :INPUT BAA
FUNC BAA : OUT BAA : LCLFUN CAA :INPUT CAA
FUNC CAA : OUT CAA : ECLEUN AAL : INPUT AAD
FUNC AAL : OUT AAL : CLFUN PAL INPUT BAL
FUNC BAD : OUT BAD : DCLFUN ADD : INPUT ALD
FTJNC Art : OUT ArL : LCLFUN BEL : INPUT Bit
FUNG BDD : OUT BDD : DCLFUN ADA :INPUT ADA
FUNC ALA : OUT ALA : LATAINiO TXT :A&A TTT
Ar 1 TT : EZ TTT L A TTT : MON,4IT OR -EL
INPUT TTT : DCLFUN TTT : CUT "AT T : AA. -EL
X1N REI, : UN REL X2NI. EEL At nFL
AD2 REL : ADl REL : LD iiEL : EZ2K REL
EK REL : LA REL : FUNC TXT : Al .E
PRINT REL : PRINT COM :PRINT SYM : DATP FLIT
ANSWER COM : ANSWER SYM : PRINT PLI

Figure 18

Programs Required for PL/1-60 Operation

"SUM"

MONITOR: proc options(maintstack(512));

Iftc entry (float binary) returns(char(17) var);

1cl
TIME fixed ext static init(O),
DCLOCK fixed ext static init(0),
&CLOCK fixed ext static init(O),

* AD(S) float ext static init(0,0,000,0,O),
DAM8 float ext static Init(0,0,0,0,0,0,O),

* dummyptr ptr,
code fixed('?),
CF float ext, /* correction factor for error signal 4/!
datafile file;

dcl
%include 'dclmon.txt';

open file(datafile) record sequential output title('data.flt')
env(b(512));

CF - ftc(exp(char(-delay/ALIMIT)));
do while (DCLOCK <- DLIMIT);

PUT SKIP LIST(ECLOCK,'E:CLOCK'); /* SLIT *
code =1

ACLOCK =0;

%include 'dd~ttt';!
N. code -I.;

do while (ACLOCK <- ALIMIT - 1);
PUT SKIP LIST(ACLOCK,'ACLOCK',TIME,'TIME'; /* ELI': *

if ACLOCK - delay then do;

end; /* if *1
%include 'aa.ttt';
write file(datafile) from(dat);
TIME - TIME + 1
ACLOCK - ACLOCK + 1;

end; /* do */
DCLOCK - rCLOCK + 1;

end; /* do */
close file(datafile);
end MONITOR;

105

/*& enry flat inry returns(char(*17) var);

del
TIME fixed ext,
T float ext,
T1 float ext,
input(5) variable entry(fixed(?)) returns(ptr),
Ek fixed static init(O),
EAl fixed static lnit(C),
DAM8 float ext,
&CLOCK fixed ext,
code fixed('),
result ptr,
mn(5) label,
(ia-ptrib-ptr,ic ptr,idptr,ieptr) ptr;

tinclude 'dclinp.tzt7

%include 'input.ttt';
if code - 1 then do;

If 1A < TIME then do;
if (nr~iuputs> 0) & (nrinputs< 6)

then do;

r(2)slb;
rn(3)'.lc;
rn(4)ld;
rn(5).1e;
goto ii(nrInputs);

end; /* then *
else goto 1f;

le: ieptr -input (5) (cod(5));
ld: idptr = input (4) (cod(4));
lc: ic ptr a input (3) (cod(3));

%in lud "unc.txt ;

EA a TIME;
end; 1* if EA *

end; /* if code then *
else

if EkI < TIME then do;
0 a F
EA1 a TIME;

end; /* EAI */

result - addr(F);
return (result);
end;

108

1* kD.PLI ~

dcl
ftc entry (float binary) returns(char(17) var);

dcl
EA fixed static init(O),
T float ext,
T1 float ext,
input(5) variable entry(fixed(7)) returns(ptr),
CF float ext,
AE(8) float ext,
code fixed(7),
result ptr,
mn(5) label,
(ia ptr,ibptr,ic..ptr,id..ptr,ie~ptr) ptr;

if EA > 0 then do;
if (nrjinputs> 0) & (nr inputs(6)

then do;
rn(l)-la;
r(2)-lb;
rn(3)=lc;
rn(4)=ld;
rn(5)le;
goto m(nr inputs);

end; 1* then *
else goto If;

le: ieptr = input (5) (cod(5));Ild.: idptr = input (4) (cod01));
lc: icptr = input (3) (cod(3));
lb: ibptr = input (2) (tcod(2));
la: iaptr - input (1) (cod(1));
lf:
%include 'fuac.txt'; /' AL(X) =IA ETC *

end; /* then *
result = addr(P);
EL 1

%include 'out.ttt';

return (result);

end;

107

L_

/* DD.PLI */
%include 'dclfun.ttt";
dcl

ftc entry (float bi'nary) returns(char(17) var);
dcl

TIME fixed ext,
T float ext,
TI float ext,
input(5) variable entry(fixed(7)) returns(ptr),
ED fixed static init(O),
ED1 fixed static init(O),
CF float ext,.1 AD(8) float ext,
DCLOCK fixed ext,
code fixed(?),
result ptr,
m(5) label,
(ia ptr,ib_ptr,ic ptr,id_ptr,ie ptr) ptr;

%include 'dclinp.txt7 ;

Ulnclude "itput.ttt';

if code - 1 then do;
if Er < rCLOCK then do;

if (nr_inputs> 0) & (nrjinputs< 6)
then do;
m(1)=la;
m(2)=ib;
m (3-)=lc;
m(l)=Id;
m(5)=e;
goto m(nr inputs);

end; /* then *I
else goto If;

le: Ie_ptr = input (5) (cod(5));
id: idptr = input (4) (cod(4));
ic: icptr = input (3) (cod(3));
ib: ib ptr = input (2) (cod(2));
la: ia ptr = input (1) (cod(1));
If: 0 =F;
U.i = rCLOCK;
%include 'func.txt';

EL - DCLOCK;
end; /* if Er */

end; /* if code then */
else do;

if Erl < rCLOCK then do;
0 =F;
EL = CLOCK;

end; /* E£I */
end; /* else */
%include 'out.ttt';
result a addr(F);
return (result);
end;

108

L P1o

/* EA.PLI/
linclude 'dclfun.ttt'

dcl
ftc entry (float binary) returns(char(l?) var);
Icl IMEfixed ext,

T float ext 9
TI float ext,
input(5) variable entry(fized17)) returns(ptr'.
cr float ext.
AN(8 float ext,
rA(8) float ext.
code fixed(7),
result ptr,
m() label,

Unclude 'dclinr,<.tzt';
%include 'input.ttt';

if TIME) 0 then do;

If thenps 0) & (nr~inputs-. 6)

m(2)nlb;
m (3)-le;
.n(4) old

stoto m(nr inputs);
end; /* then *
else goto lt; ipt~ ()

le: ieptr u input k5) (1);
l:Id..ptr a Input 14) (1);

lc : Ic ptr-inu k3 1
1 b: lb ptr - input i2 1 1:
1 a: ta-ptr - input (
It :

%include 'tunc.tit'; /* IA(X) 1B I -~'

end; 1* then ,

result - addr(F);

94nld 'u~t'

return (result);
end;

j -. 109

REFORM: proc options(main);

dcl
(input,output) file,
buff char(l) varying;

open file(input) st.ream env(b(1024)) title('$l.$l');
open file(output) stream output env(b(1024)) title('$2.$2');

do while V'Ib);
read file (input) Into (buff);
buff - translate(buff,';','\');
write file (output) from (buff);

end reform;

PRINT: proc options(main);

dcl
data dec(15,6),
(J,k,m) fixed bin(?),
(time~dat~tempstr)'char(128) var,
(info,input,output) file,
%include 'datainfo.txt';

open file(input) record sequential title('LATk.FLT')
env(b(512));

open file(output) stream output title('$..$i')
env(b(512));

do k = 0 to timel;
tim'e -' '
temp-str-'TIME='1 ,char(1r);
do m - 1 to length(temp str);

If substr(temp Tstr,m,i) -- ' ' then
time =time1,substr(tempstr,m,,1);

end; '

time j m "11time;
write file(output) from(time);
do J- 1 to nr data;

read file~input) into(data);
dat 0 '^1 'Mnaame(.1)1i'-',,char data);
write file (output) from(dat);

end;
end; /* do kc*
end;

110

APPENrI: C

GRAPES OF EXAMPLE PROBLE' FR!SULTS

4

3

2T 4T 6T 8T
TIME

Figure 1SA

Response to Unit Step Input With No Carrection

1 4

3

2T 4T 6T 8T
TIME

figure 1S'5

Response to Unit Step Input 41th Correction

2T 4T 6T OT
TIME

Figure 19C

Terminated Ramp Input With N4o Corrections

3

2T 4T TIE 6T 8T

Figure 19D

Terminated Ramp Input With Corrections

112

2

10lT TIME 40T

-1 90% DELAY
UCORRECTED

-2

Fiue2 ~

ies10Ts oVral Tep IMput 40han itoT orti

. - - -- - -

11~ ~ ~ ~ 0 DELAY__________

CORETE

.2 90% DELAY
2 UNCORRECTED

TIME

90% DELAY

2 CORRECTED

-2

Figure 19F

* 1 Response to Variable Step Inputs With and Without Corrections

114

Databs Maaggi.4!SHLa: I shton I-ate, Culver City.

Caliria, 1982

Z. PLI-e Reference ManpAl, 11Iital Research, Paci~i-

3. LIN4I-So Users Guile. Ligital Research, Pacific Irove.
Califronia, 1SE0

4. ?PL1z6 AIcRUAtions1 3uidt, Digi tal Research. Pacific
rove, California, 1980

5. Cadzoa, J.A. and Martens, H.R~., riscrete-Time and
Coman~ue Control S ysICrnI, Petc al

6. latz, P., DAIji~ oto 2R21 MUn !Mi r~oessor S9
Prentice Hall, 1981

115

BIBLIGGRiLPRY

1ranklin, G.F. and Powell j.r., I~t1Cnrlo
DynRnIM 3jsjjtij, Addlson Wesley, 19SO

Kirk, L.E., 2p~jirnAl Cont.rl T ieory Frentie Hill,

Cgata, I., Modern Control Engineerjgt. Frentiae Hiall,
1270

Cppenteim, A.VI. and Sch'afer, R.W., ridjitj 4Si-nl

Eal 17
?rc*jz rnie .

Za.s . h -Z Iatok'%l ye n. g--

9li

14;7e1 . -

No. Copies

1. refense Technical Information Center 2I Cameron Station
,Aleexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93G4O

3. repartment {hairnan, Code 621
tepartment of Electrical Engineering
Naval Postgraduate School
Monterey, California 93G40

4. Protessor'Alex Gerba, Jr., Code 52"tz 2
repartment of Electrical Engineerin2
Naval Postgraduate School
Monterey, California O3940

0. Prcfessor 'eoe j, "haler, Code 52Tr
repartment of Electrical Engiteering
Naval Postgraduate Schcol
Monterey, California 394e

6. Professor Pitchell L. "otton, 'ode 52Cc
Department of Electrical Sngineering
Naval Postgraduate School
T onterey, Cal ifornia 939 40

7. Professor Rarold A. Titus, Code bl2Ts1
repartment of Electrical Engineerinz
Naval Postgraduate School
Monterey, California 93G40

6. Professor Uto R. lodres, Code 52Kr1
'epartet of Computer S'!ienceb
Naval Postgraduate School
Monterey, Califcrnia ;%G4

*-9. Lt. Roger F. Johnsrud, UJSN1
* % Cindy F. Lee

SL61 Universe Avenue
Westm~inster* California 9-26E3

117

I
DATE

FILM

